Spaces:
Sleeping
Sleeping
File size: 18,971 Bytes
c1cdf7c a2335c5 c1cdf7c a2335c5 c1cdf7c 96b8cb4 e2808f2 664e897 c1cdf7c a2335c5 c1cdf7c a2335c5 96b8cb4 0a74a16 6848cbe 0a74a16 a2335c5 c1cdf7c a2335c5 7d6eec9 a2335c5 7d6eec9 a2335c5 7d6eec9 a2335c5 5a57fa7 e2808f2 a2335c5 e2808f2 a2335c5 e2808f2 c1cdf7c 2bcd6e7 c1cdf7c 2bcd6e7 c1cdf7c 0a74a16 c1cdf7c 0a74a16 c1cdf7c 0a74a16 c1cdf7c 0a74a16 c1cdf7c 0a74a16 c1cdf7c 34054e0 c1cdf7c a65ba38 c1cdf7c a65ba38 c1cdf7c 34054e0 c1cdf7c 34054e0 c1cdf7c a65ba38 c1cdf7c 7d6eec9 c1cdf7c 7d6eec9 c1cdf7c 7d6eec9 c1cdf7c 7d6eec9 c1cdf7c 7d6eec9 c1cdf7c 0a74a16 96b8cb4 0a74a16 c1cdf7c 0a74a16 c1cdf7c 0a74a16 96b8cb4 c1cdf7c 96b8cb4 c1cdf7c 34054e0 7d6eec9 c1cdf7c 0a74a16 c1cdf7c 96b8cb4 0a74a16 96b8cb4 0a74a16 c1cdf7c 96b8cb4 c1cdf7c 0a74a16 96b8cb4 57a48db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import fitz # PyMuPDF
import gradio as gr
import requests
from bs4 import BeautifulSoup
import urllib.parse
import random
import os
from dotenv import load_dotenv
import shutil
import tempfile
import re
import unicodedata
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.probability import FreqDist
import nltk
# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')
load_dotenv() # Load environment variables from .env file
# Now replace the hard-coded token with the environment variable
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
def clear_cache():
try:
# Clear Gradio cache
cache_dir = tempfile.gettempdir()
shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True)
# Clear any custom cache you might have
# For example, if you're caching PDF files or search results:
if os.path.exists("output_summary.pdf"):
os.remove("output_summary.pdf")
# Add any other cache clearing operations here
print("Cache cleared successfully.")
return "Cache cleared successfully."
except Exception as e:
print(f"Error clearing cache: {e}")
return f"Error clearing cache: {e}"
PREDEFINED_QUERIES = {
"Recent Earnings": {
"query": "{company} recent quarterly earnings",
"instructions": "Provide the most recent quarterly earnings data for {company}. Include revenue, net income, loan growth, deposit growth if any, EPS and asset quality. Specify the exact quarter and year."
},
"Recent News": {
"query": "{company} recent news",
"instructions": "Summarize the most recent significant news about {company}. Focus on events that could impact the company's financial performance or stock price."
},
"Credit Rating": {
"query": "{company} current credit rating",
"instructions": "Provide the most recent credit rating for {company}. Include the rating agency, the exact rating, and the date it was issued or last confirmed."
},
"Earnings Call Transcript": {
"query": "{company} most recent earnings call transcript",
"instructions": "Summarize key points from {company}'s most recent earnings call. Include date of the call, major financial highlights, and any significant forward-looking statements."
}
}
_useragent_list = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Edge/91.0.864.59 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Safari/537.36",
]
# Function to extract visible text from HTML content of a webpage
def extract_text_from_webpage(html):
print("Extracting text from webpage...")
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.extract() # Remove scripts and styles
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
print(f"Extracted text length: {len(text)}")
return text
# Function to perform a Google search and retrieve results
def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_verify=None):
"""Performs a Google search and returns the results."""
print(f"Searching for term: {term}")
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
max_chars_per_page = 8000 # Limit the number of characters from each webpage to stay under the token limit
with requests.Session() as session:
while start < num_results:
print(f"Fetching search results starting from: {start}")
try:
# Choose a random user agent
user_agent = random.choice(_useragent_list)
headers = {
'User-Agent': user_agent
}
print(f"Using User-Agent: {headers['User-Agent']}")
resp = session.get(
url="https://www.google.com/search",
headers=headers,
params={
"q": term,
"num": num_results - start,
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error fetching search results: {e}")
break
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
if not result_block:
print("No more results found.")
break
keywords = term.split() # Use the search term as keywords for filtering
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
print(f"Found link: {link}")
try:
webpage = session.get(link, headers=headers, timeout=timeout)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
# Apply preprocessing to the visible text
preprocessed_text = preprocess_web_content(visible_text, keywords)
if len(preprocessed_text) > max_chars_per_page:
preprocessed_text = preprocessed_text[:max_chars_per_page] + "..."
all_results.append({"link": link, "text": preprocessed_text})
except requests.exceptions.RequestException as e:
print(f"Error fetching or processing {link}: {e}")
all_results.append({"link": link, "text": None})
else:
print("No link found in result.")
all_results.append({"link": None, "text": None})
start += len(result_block)
print(f"Total results fetched: {len(all_results)}")
return all_results
def preprocess_text(text):
# Remove HTML tags
text = BeautifulSoup(text, "html.parser").get_text()
# Remove URLs
text = re.sub(r'http\S+|www.\S+', '', text)
# Remove special characters and digits
text = re.sub(r'[^a-zA-Z\s]', '', text)
# Remove extra whitespace
text = ' '.join(text.split())
# Convert to lowercase
text = text.lower()
return text
def remove_boilerplate(text):
# List of common boilerplate phrases to remove
boilerplate = [
"all rights reserved",
"terms of service",
"privacy policy",
"cookie policy",
"copyright ©",
"follow us on social media"
]
for phrase in boilerplate:
text = text.replace(phrase, '')
return text
def keyword_filter(text, keywords):
sentences = sent_tokenize(text)
filtered_sentences = [sentence for sentence in sentences if any(keyword.lower() in sentence.lower() for keyword in keywords)]
return ' '.join(filtered_sentences)
def summarize_text(text, num_sentences=3):
# Tokenize the text into words
words = word_tokenize(text)
# Remove stopwords
stop_words = set(stopwords.words('english'))
words = [word for word in words if word.lower() not in stop_words]
# Calculate word frequencies
freq_dist = FreqDist(words)
# Score sentences based on word frequencies
sentences = sent_tokenize(text)
sentence_scores = {}
for sentence in sentences:
for word in word_tokenize(sentence.lower()):
if word in freq_dist:
if sentence not in sentence_scores:
sentence_scores[sentence] = freq_dist[word]
else:
sentence_scores[sentence] += freq_dist[word]
# Get the top N sentences with highest scores
summary_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:num_sentences]
# Sort the selected sentences in the order they appear in the original text
summary_sentences = sorted(summary_sentences, key=text.index)
return ' '.join(summary_sentences)
def preprocess_web_content(content, keywords):
# Apply basic preprocessing
preprocessed_text = preprocess_text(content)
# Remove boilerplate
preprocessed_text = remove_boilerplate(preprocessed_text)
# Apply keyword filtering
filtered_text = keyword_filter(preprocessed_text, keywords)
# Summarize the text
summarized_text = summarize_text(filtered_text)
return summarized_text
# Function to format the prompt for the Hugging Face API
def format_prompt(query, search_results, instructions):
formatted_results = ""
for result in search_results:
link = result["link"]
text = result["text"]
if link:
formatted_results += f"URL: {link}\nContent: {text}\n{'-' * 80}\n"
else:
formatted_results += "No link found.\n" + '-' * 80 + '\n'
prompt = f"""Instructions: {instructions}
User Query: {query}
Web Search Results:
{formatted_results}
Important: Provide a precise and factual response based solely on the information given above. Include specific dates, numbers, and sources where available. If exact information is not provided in the search results, clearly state that the information is not available in the given context. Do not make assumptions or provide information that is not directly supported by the search results.
Assistant:"""
return prompt
# Function to generate text using Hugging Face API
def generate_text(input_text, temperature=0.3, repetition_penalty=1.2, top_p=0.9):
print("Generating text using Hugging Face API...")
endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
headers = {
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}",
"Content-Type": "application/json"
}
data = {
"inputs": input_text,
"parameters": {
"max_new_tokens": 1000, # Reduced to focus on more concise answers
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"top_p": top_p,
"do_sample": True
}
}
try:
response = requests.post(endpoint, headers=headers, json=data)
response.raise_for_status()
# Check if response is JSON
try:
json_data = response.json()
except ValueError:
print("Response is not JSON.")
return None
# Extract generated text from response JSON
if isinstance(json_data, list):
# Handle list response (if applicable for your use case)
generated_text = json_data[0].get("generated_text") if json_data else None
elif isinstance(json_data, dict):
# Handle dictionary response
generated_text = json_data.get("generated_text")
else:
print("Unexpected response format.")
return None
if generated_text is not None:
print("Text generation complete using Hugging Face API.")
print(f"Generated text: {generated_text}") # Debugging line
return generated_text
else:
print("Generated text not found in response.")
return None
except requests.exceptions.RequestException as e:
print(f"Error generating text using Hugging Face API: {e}")
return None
# Function to read and extract text from a PDF
def read_pdf(file_obj):
with fitz.open(file_obj.name) as document:
text = ""
for page_num in range(document.page_count):
page = document.load_page(page_num)
text += page.get_text()
return text
# Function to format the prompt with instructions for text generation
def format_prompt_with_instructions(text, instructions):
prompt = f"{instructions}{text}\n\nAssistant:"
return prompt
# Function to save text to a PDF
def save_text_to_pdf(text, output_path):
print(f"Saving text to PDF at {output_path}...")
doc = fitz.open() # Create a new PDF document
page = doc.new_page() # Create a new page
# Set the page margins
margin = 50 # 50 points margin
page_width = page.rect.width
page_height = page.rect.height
text_width = page_width - 2 * margin
text_height = page_height - 2 * margin
# Define font size and line spacing
font_size = 9
line_spacing = 1 * font_size
fontname = "times-roman" # Use a supported font name
# Process the text to handle line breaks and paragraphs
paragraphs = text.split("\n") # Split text into paragraphs
y_position = margin
for paragraph in paragraphs:
words = paragraph.split()
current_line = ""
for word in words:
word = str(word) # Ensure word is treated as string
# Calculate the length of the current line plus the new word
current_line_length = fitz.get_text_length(current_line + " " + word, fontsize=font_size, fontname=fontname)
if current_line_length <= text_width:
current_line += " " + word
else:
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname)
y_position += line_spacing
if y_position + line_spacing > page_height - margin:
page = doc.new_page() # Add a new page if text exceeds page height
y_position = margin
current_line = word
# Add the last line of the paragraph
page.insert_text(fitz.Point(margin, y_position), current_line.strip(), fontsize=font_size, fontname=fontname)
y_position += line_spacing
# Add extra space for new paragraph
y_position += line_spacing
if y_position + line_spacing > page_height - margin:
page = doc.new_page() # Add a new page if text exceeds page height
y_position = margin
doc.save(output_path) # Save the PDF to the specified path
print("PDF saved successfully.")
# Integrated function to perform web scraping, formatting, and text generation
def scrape_and_display(query, num_results, instructions, web_search=True, temperature=0.7, repetition_penalty=1.0, top_p=0.9):
print(f"Scraping and displaying results for query: {query} with num_results: {num_results}")
if web_search:
search_results = google_search(query, num_results)
formatted_prompt = format_prompt(query, search_results, instructions)
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
else:
formatted_prompt = format_prompt_with_instructions(query, instructions)
generated_summary = generate_text(formatted_prompt, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
print("Scraping and display complete.")
if generated_summary:
# Extract and return text starting from "Assistant:"
assistant_index = generated_summary.find("Assistant:")
if assistant_index != -1:
generated_summary = generated_summary[assistant_index:]
else:
generated_summary = "Assistant: No response generated."
print(f"Generated summary: {generated_summary}") # Debugging line
return generated_summary
# Main Gradio interface function
def gradio_interface(query, use_dashboard, use_pdf, pdf, num_results, custom_instructions, temperature, repetition_penalty, top_p, clear_cache_flag):
if clear_cache_flag:
return clear_cache()
if use_dashboard:
results = []
for query_type, query_info in PREDEFINED_QUERIES.items():
formatted_query = query_info['query'].format(company=query)
formatted_instructions = query_info['instructions'].format(company=query)
result = scrape_and_display(formatted_query, num_results=num_results, instructions=formatted_instructions, web_search=True, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
results.append(f"**{query_type}**\n\n{result}\n\n")
generated_summary = "\n".join(results)
elif use_pdf and pdf is not None:
pdf_text = read_pdf(pdf)
generated_summary = scrape_and_display(pdf_text, num_results=0, instructions=custom_instructions, web_search=False, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
else:
generated_summary = scrape_and_display(query, num_results=num_results, instructions=custom_instructions, web_search=True, temperature=temperature, repetition_penalty=repetition_penalty, top_p=top_p)
output_pdf_path = "output_summary.pdf"
save_text_to_pdf(generated_summary, output_pdf_path)
return generated_summary, output_pdf_path
# Deploy Gradio Interface
gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Company Name or Query"),
gr.Checkbox(label="Use Dashboard"),
gr.Checkbox(label="Use PDF"),
gr.File(label="Upload PDF"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results"),
gr.Textbox(label="Custom Instructions"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Repetition Penalty"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top p"),
gr.Checkbox(label="Clear Cache", visible=False)
],
outputs=["text", gr.File(label="Generated PDF")],
title="Financial Analyst AI Assistant",
description="Enter a company name to get a financial dashboard, or enter a custom query. Optionally, upload a PDF for analysis. Adjust parameters as needed for optimal results.",
allow_flagging="never"
).launch(share=True) |