Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,16 @@ import os
|
|
8 |
from dotenv import load_dotenv
|
9 |
import shutil
|
10 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
load_dotenv() # Load environment variables from .env file
|
13 |
|
@@ -116,6 +126,8 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
116 |
if not result_block:
|
117 |
print("No more results found.")
|
118 |
break
|
|
|
|
|
119 |
for result in result_block:
|
120 |
link = result.find("a", href=True)
|
121 |
if link:
|
@@ -125,9 +137,13 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
125 |
webpage = session.get(link, headers=headers, timeout=timeout)
|
126 |
webpage.raise_for_status()
|
127 |
visible_text = extract_text_from_webpage(webpage.text)
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
131 |
except requests.exceptions.RequestException as e:
|
132 |
print(f"Error fetching or processing {link}: {e}")
|
133 |
all_results.append({"link": link, "text": None})
|
@@ -138,6 +154,91 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
138 |
print(f"Total results fetched: {len(all_results)}")
|
139 |
return all_results
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
# Function to format the prompt for the Hugging Face API
|
142 |
def format_prompt(query, search_results, instructions):
|
143 |
formatted_results = ""
|
|
|
8 |
from dotenv import load_dotenv
|
9 |
import shutil
|
10 |
import tempfile
|
11 |
+
import re
|
12 |
+
import unicodedata
|
13 |
+
from nltk.corpus import stopwords
|
14 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
15 |
+
from nltk.probability import FreqDist
|
16 |
+
import nltk
|
17 |
+
|
18 |
+
# Download necessary NLTK data
|
19 |
+
nltk.download('punkt')
|
20 |
+
nltk.download('stopwords')
|
21 |
|
22 |
load_dotenv() # Load environment variables from .env file
|
23 |
|
|
|
126 |
if not result_block:
|
127 |
print("No more results found.")
|
128 |
break
|
129 |
+
keywords = term.split() # Use the search term as keywords for filtering
|
130 |
+
|
131 |
for result in result_block:
|
132 |
link = result.find("a", href=True)
|
133 |
if link:
|
|
|
137 |
webpage = session.get(link, headers=headers, timeout=timeout)
|
138 |
webpage.raise_for_status()
|
139 |
visible_text = extract_text_from_webpage(webpage.text)
|
140 |
+
|
141 |
+
# Apply preprocessing to the visible text
|
142 |
+
preprocessed_text = preprocess_web_content(visible_text, keywords)
|
143 |
+
|
144 |
+
if len(preprocessed_text) > max_chars_per_page:
|
145 |
+
preprocessed_text = preprocessed_text[:max_chars_per_page] + "..."
|
146 |
+
all_results.append({"link": link, "text": preprocessed_text})
|
147 |
except requests.exceptions.RequestException as e:
|
148 |
print(f"Error fetching or processing {link}: {e}")
|
149 |
all_results.append({"link": link, "text": None})
|
|
|
154 |
print(f"Total results fetched: {len(all_results)}")
|
155 |
return all_results
|
156 |
|
157 |
+
def preprocess_text(text):
|
158 |
+
# Remove HTML tags
|
159 |
+
text = BeautifulSoup(text, "html.parser").get_text()
|
160 |
+
|
161 |
+
# Remove URLs
|
162 |
+
text = re.sub(r'http\S+|www.\S+', '', text)
|
163 |
+
|
164 |
+
# Remove special characters and digits
|
165 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
166 |
+
|
167 |
+
# Remove extra whitespace
|
168 |
+
text = ' '.join(text.split())
|
169 |
+
|
170 |
+
# Convert to lowercase
|
171 |
+
text = text.lower()
|
172 |
+
|
173 |
+
return text
|
174 |
+
|
175 |
+
def remove_boilerplate(text):
|
176 |
+
# List of common boilerplate phrases to remove
|
177 |
+
boilerplate = [
|
178 |
+
"all rights reserved",
|
179 |
+
"terms of service",
|
180 |
+
"privacy policy",
|
181 |
+
"cookie policy",
|
182 |
+
"copyright ©",
|
183 |
+
"follow us on social media"
|
184 |
+
]
|
185 |
+
|
186 |
+
for phrase in boilerplate:
|
187 |
+
text = text.replace(phrase, '')
|
188 |
+
|
189 |
+
return text
|
190 |
+
|
191 |
+
def keyword_filter(text, keywords):
|
192 |
+
sentences = sent_tokenize(text)
|
193 |
+
filtered_sentences = [sentence for sentence in sentences if any(keyword.lower() in sentence.lower() for keyword in keywords)]
|
194 |
+
return ' '.join(filtered_sentences)
|
195 |
+
|
196 |
+
def summarize_text(text, num_sentences=3):
|
197 |
+
# Tokenize the text into words
|
198 |
+
words = word_tokenize(text)
|
199 |
+
|
200 |
+
# Remove stopwords
|
201 |
+
stop_words = set(stopwords.words('english'))
|
202 |
+
words = [word for word in words if word.lower() not in stop_words]
|
203 |
+
|
204 |
+
# Calculate word frequencies
|
205 |
+
freq_dist = FreqDist(words)
|
206 |
+
|
207 |
+
# Score sentences based on word frequencies
|
208 |
+
sentences = sent_tokenize(text)
|
209 |
+
sentence_scores = {}
|
210 |
+
for sentence in sentences:
|
211 |
+
for word in word_tokenize(sentence.lower()):
|
212 |
+
if word in freq_dist:
|
213 |
+
if sentence not in sentence_scores:
|
214 |
+
sentence_scores[sentence] = freq_dist[word]
|
215 |
+
else:
|
216 |
+
sentence_scores[sentence] += freq_dist[word]
|
217 |
+
|
218 |
+
# Get the top N sentences with highest scores
|
219 |
+
summary_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:num_sentences]
|
220 |
+
|
221 |
+
# Sort the selected sentences in the order they appear in the original text
|
222 |
+
summary_sentences = sorted(summary_sentences, key=text.index)
|
223 |
+
|
224 |
+
return ' '.join(summary_sentences)
|
225 |
+
|
226 |
+
def preprocess_web_content(content, keywords):
|
227 |
+
# Apply basic preprocessing
|
228 |
+
preprocessed_text = preprocess_text(content)
|
229 |
+
|
230 |
+
# Remove boilerplate
|
231 |
+
preprocessed_text = remove_boilerplate(preprocessed_text)
|
232 |
+
|
233 |
+
# Apply keyword filtering
|
234 |
+
filtered_text = keyword_filter(preprocessed_text, keywords)
|
235 |
+
|
236 |
+
# Summarize the text
|
237 |
+
summarized_text = summarize_text(filtered_text)
|
238 |
+
|
239 |
+
return summarized_text
|
240 |
+
|
241 |
+
|
242 |
# Function to format the prompt for the Hugging Face API
|
243 |
def format_prompt(query, search_results, instructions):
|
244 |
formatted_results = ""
|