Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,16 @@ import os
|
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
import shutil
|
| 10 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
load_dotenv() # Load environment variables from .env file
|
| 13 |
|
|
@@ -116,6 +126,8 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
| 116 |
if not result_block:
|
| 117 |
print("No more results found.")
|
| 118 |
break
|
|
|
|
|
|
|
| 119 |
for result in result_block:
|
| 120 |
link = result.find("a", href=True)
|
| 121 |
if link:
|
|
@@ -125,9 +137,13 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
| 125 |
webpage = session.get(link, headers=headers, timeout=timeout)
|
| 126 |
webpage.raise_for_status()
|
| 127 |
visible_text = extract_text_from_webpage(webpage.text)
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
except requests.exceptions.RequestException as e:
|
| 132 |
print(f"Error fetching or processing {link}: {e}")
|
| 133 |
all_results.append({"link": link, "text": None})
|
|
@@ -138,6 +154,91 @@ def google_search(term, num_results=5, lang="en", timeout=5, safe="active", ssl_
|
|
| 138 |
print(f"Total results fetched: {len(all_results)}")
|
| 139 |
return all_results
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
# Function to format the prompt for the Hugging Face API
|
| 142 |
def format_prompt(query, search_results, instructions):
|
| 143 |
formatted_results = ""
|
|
|
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
import shutil
|
| 10 |
import tempfile
|
| 11 |
+
import re
|
| 12 |
+
import unicodedata
|
| 13 |
+
from nltk.corpus import stopwords
|
| 14 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 15 |
+
from nltk.probability import FreqDist
|
| 16 |
+
import nltk
|
| 17 |
+
|
| 18 |
+
# Download necessary NLTK data
|
| 19 |
+
nltk.download('punkt')
|
| 20 |
+
nltk.download('stopwords')
|
| 21 |
|
| 22 |
load_dotenv() # Load environment variables from .env file
|
| 23 |
|
|
|
|
| 126 |
if not result_block:
|
| 127 |
print("No more results found.")
|
| 128 |
break
|
| 129 |
+
keywords = term.split() # Use the search term as keywords for filtering
|
| 130 |
+
|
| 131 |
for result in result_block:
|
| 132 |
link = result.find("a", href=True)
|
| 133 |
if link:
|
|
|
|
| 137 |
webpage = session.get(link, headers=headers, timeout=timeout)
|
| 138 |
webpage.raise_for_status()
|
| 139 |
visible_text = extract_text_from_webpage(webpage.text)
|
| 140 |
+
|
| 141 |
+
# Apply preprocessing to the visible text
|
| 142 |
+
preprocessed_text = preprocess_web_content(visible_text, keywords)
|
| 143 |
+
|
| 144 |
+
if len(preprocessed_text) > max_chars_per_page:
|
| 145 |
+
preprocessed_text = preprocessed_text[:max_chars_per_page] + "..."
|
| 146 |
+
all_results.append({"link": link, "text": preprocessed_text})
|
| 147 |
except requests.exceptions.RequestException as e:
|
| 148 |
print(f"Error fetching or processing {link}: {e}")
|
| 149 |
all_results.append({"link": link, "text": None})
|
|
|
|
| 154 |
print(f"Total results fetched: {len(all_results)}")
|
| 155 |
return all_results
|
| 156 |
|
| 157 |
+
def preprocess_text(text):
|
| 158 |
+
# Remove HTML tags
|
| 159 |
+
text = BeautifulSoup(text, "html.parser").get_text()
|
| 160 |
+
|
| 161 |
+
# Remove URLs
|
| 162 |
+
text = re.sub(r'http\S+|www.\S+', '', text)
|
| 163 |
+
|
| 164 |
+
# Remove special characters and digits
|
| 165 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
| 166 |
+
|
| 167 |
+
# Remove extra whitespace
|
| 168 |
+
text = ' '.join(text.split())
|
| 169 |
+
|
| 170 |
+
# Convert to lowercase
|
| 171 |
+
text = text.lower()
|
| 172 |
+
|
| 173 |
+
return text
|
| 174 |
+
|
| 175 |
+
def remove_boilerplate(text):
|
| 176 |
+
# List of common boilerplate phrases to remove
|
| 177 |
+
boilerplate = [
|
| 178 |
+
"all rights reserved",
|
| 179 |
+
"terms of service",
|
| 180 |
+
"privacy policy",
|
| 181 |
+
"cookie policy",
|
| 182 |
+
"copyright ©",
|
| 183 |
+
"follow us on social media"
|
| 184 |
+
]
|
| 185 |
+
|
| 186 |
+
for phrase in boilerplate:
|
| 187 |
+
text = text.replace(phrase, '')
|
| 188 |
+
|
| 189 |
+
return text
|
| 190 |
+
|
| 191 |
+
def keyword_filter(text, keywords):
|
| 192 |
+
sentences = sent_tokenize(text)
|
| 193 |
+
filtered_sentences = [sentence for sentence in sentences if any(keyword.lower() in sentence.lower() for keyword in keywords)]
|
| 194 |
+
return ' '.join(filtered_sentences)
|
| 195 |
+
|
| 196 |
+
def summarize_text(text, num_sentences=3):
|
| 197 |
+
# Tokenize the text into words
|
| 198 |
+
words = word_tokenize(text)
|
| 199 |
+
|
| 200 |
+
# Remove stopwords
|
| 201 |
+
stop_words = set(stopwords.words('english'))
|
| 202 |
+
words = [word for word in words if word.lower() not in stop_words]
|
| 203 |
+
|
| 204 |
+
# Calculate word frequencies
|
| 205 |
+
freq_dist = FreqDist(words)
|
| 206 |
+
|
| 207 |
+
# Score sentences based on word frequencies
|
| 208 |
+
sentences = sent_tokenize(text)
|
| 209 |
+
sentence_scores = {}
|
| 210 |
+
for sentence in sentences:
|
| 211 |
+
for word in word_tokenize(sentence.lower()):
|
| 212 |
+
if word in freq_dist:
|
| 213 |
+
if sentence not in sentence_scores:
|
| 214 |
+
sentence_scores[sentence] = freq_dist[word]
|
| 215 |
+
else:
|
| 216 |
+
sentence_scores[sentence] += freq_dist[word]
|
| 217 |
+
|
| 218 |
+
# Get the top N sentences with highest scores
|
| 219 |
+
summary_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:num_sentences]
|
| 220 |
+
|
| 221 |
+
# Sort the selected sentences in the order they appear in the original text
|
| 222 |
+
summary_sentences = sorted(summary_sentences, key=text.index)
|
| 223 |
+
|
| 224 |
+
return ' '.join(summary_sentences)
|
| 225 |
+
|
| 226 |
+
def preprocess_web_content(content, keywords):
|
| 227 |
+
# Apply basic preprocessing
|
| 228 |
+
preprocessed_text = preprocess_text(content)
|
| 229 |
+
|
| 230 |
+
# Remove boilerplate
|
| 231 |
+
preprocessed_text = remove_boilerplate(preprocessed_text)
|
| 232 |
+
|
| 233 |
+
# Apply keyword filtering
|
| 234 |
+
filtered_text = keyword_filter(preprocessed_text, keywords)
|
| 235 |
+
|
| 236 |
+
# Summarize the text
|
| 237 |
+
summarized_text = summarize_text(filtered_text)
|
| 238 |
+
|
| 239 |
+
return summarized_text
|
| 240 |
+
|
| 241 |
+
|
| 242 |
# Function to format the prompt for the Hugging Face API
|
| 243 |
def format_prompt(query, search_results, instructions):
|
| 244 |
formatted_results = ""
|