Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- server/utils/__init__.py +0 -0
- server/utils/viewer.py +98 -0
- server/utils/wrapper.py +654 -0
server/utils/__init__.py
ADDED
|
File without changes
|
server/utils/viewer.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import threading
|
| 4 |
+
import time
|
| 5 |
+
import tkinter as tk
|
| 6 |
+
from multiprocessing import Queue
|
| 7 |
+
from typing import List
|
| 8 |
+
from PIL import Image, ImageTk
|
| 9 |
+
from streamdiffusion.image_utils import postprocess_image
|
| 10 |
+
|
| 11 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def update_image(image_data: Image.Image, label: tk.Label) -> None:
|
| 15 |
+
"""
|
| 16 |
+
Update the image displayed on a Tkinter label.
|
| 17 |
+
|
| 18 |
+
Parameters
|
| 19 |
+
----------
|
| 20 |
+
image_data : Image.Image
|
| 21 |
+
The image to be displayed.
|
| 22 |
+
label : tk.Label
|
| 23 |
+
The labels where the image will be updated.
|
| 24 |
+
"""
|
| 25 |
+
width = 512
|
| 26 |
+
height = 512
|
| 27 |
+
tk_image = ImageTk.PhotoImage(image_data, size=width)
|
| 28 |
+
label.configure(image=tk_image, width=width, height=height)
|
| 29 |
+
label.image = tk_image # keep a reference
|
| 30 |
+
|
| 31 |
+
def _receive_images(
|
| 32 |
+
queue: Queue, fps_queue: Queue, label: tk.Label, fps_label: tk.Label
|
| 33 |
+
) -> None:
|
| 34 |
+
"""
|
| 35 |
+
Continuously receive images from a queue and update the labels.
|
| 36 |
+
|
| 37 |
+
Parameters
|
| 38 |
+
----------
|
| 39 |
+
queue : Queue
|
| 40 |
+
The queue to receive images from.
|
| 41 |
+
fps_queue : Queue
|
| 42 |
+
The queue to put the calculated fps.
|
| 43 |
+
label : tk.Label
|
| 44 |
+
The label to update with images.
|
| 45 |
+
fps_label : tk.Label
|
| 46 |
+
The label to show fps.
|
| 47 |
+
"""
|
| 48 |
+
while True:
|
| 49 |
+
try:
|
| 50 |
+
if not queue.empty():
|
| 51 |
+
label.after(
|
| 52 |
+
0,
|
| 53 |
+
update_image,
|
| 54 |
+
postprocess_image(queue.get(block=False), output_type="pil")[0],
|
| 55 |
+
label,
|
| 56 |
+
)
|
| 57 |
+
if not fps_queue.empty():
|
| 58 |
+
fps_label.config(text=f"FPS: {fps_queue.get(block=False):.2f}")
|
| 59 |
+
|
| 60 |
+
time.sleep(0.0005)
|
| 61 |
+
except KeyboardInterrupt:
|
| 62 |
+
return
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def receive_images(queue: Queue, fps_queue: Queue) -> None:
|
| 66 |
+
"""
|
| 67 |
+
Setup the Tkinter window and start the thread to receive images.
|
| 68 |
+
|
| 69 |
+
Parameters
|
| 70 |
+
----------
|
| 71 |
+
queue : Queue
|
| 72 |
+
The queue to receive images from.
|
| 73 |
+
fps_queue : Queue
|
| 74 |
+
The queue to put the calculated fps.
|
| 75 |
+
"""
|
| 76 |
+
root = tk.Tk()
|
| 77 |
+
root.title("Image Viewer")
|
| 78 |
+
label = tk.Label(root)
|
| 79 |
+
fps_label = tk.Label(root, text="FPS: 0")
|
| 80 |
+
label.grid(column=0)
|
| 81 |
+
fps_label.grid(column=1)
|
| 82 |
+
|
| 83 |
+
def on_closing():
|
| 84 |
+
print("window closed")
|
| 85 |
+
root.quit() # stop event loop
|
| 86 |
+
return
|
| 87 |
+
|
| 88 |
+
thread = threading.Thread(
|
| 89 |
+
target=_receive_images, args=(queue, fps_queue, label, fps_label), daemon=True
|
| 90 |
+
)
|
| 91 |
+
thread.start()
|
| 92 |
+
|
| 93 |
+
try:
|
| 94 |
+
root.protocol("WM_DELETE_WINDOW", on_closing)
|
| 95 |
+
root.mainloop()
|
| 96 |
+
except KeyboardInterrupt:
|
| 97 |
+
return
|
| 98 |
+
|
server/utils/wrapper.py
ADDED
|
@@ -0,0 +1,654 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
import os
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import traceback
|
| 5 |
+
from typing import List, Literal, Optional, Union, Dict
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
from diffusers import AutoencoderTiny, StableDiffusionPipeline
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from polygraphy import cuda
|
| 12 |
+
|
| 13 |
+
from streamdiffusion import StreamDiffusion
|
| 14 |
+
from streamdiffusion.image_utils import postprocess_image
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
torch.set_grad_enabled(False)
|
| 18 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 19 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class StreamDiffusionWrapper:
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
model_id_or_path: str,
|
| 26 |
+
t_index_list: List[int],
|
| 27 |
+
lora_dict: Optional[Dict[str, float]] = None,
|
| 28 |
+
mode: Literal["img2img", "txt2img"] = "img2img",
|
| 29 |
+
output_type: Literal["pil", "pt", "np", "latent"] = "pil",
|
| 30 |
+
lcm_lora_id: Optional[str] = None,
|
| 31 |
+
vae_id: Optional[str] = None,
|
| 32 |
+
device: Literal["cpu", "cuda"] = "cuda",
|
| 33 |
+
dtype: torch.dtype = torch.float16,
|
| 34 |
+
frame_buffer_size: int = 1,
|
| 35 |
+
width: int = 512,
|
| 36 |
+
height: int = 512,
|
| 37 |
+
warmup: int = 10,
|
| 38 |
+
acceleration: Literal["none", "xformers", "tensorrt"] = "tensorrt",
|
| 39 |
+
do_add_noise: bool = True,
|
| 40 |
+
device_ids: Optional[List[int]] = None,
|
| 41 |
+
use_lcm_lora: bool = True,
|
| 42 |
+
use_tiny_vae: bool = True,
|
| 43 |
+
enable_similar_image_filter: bool = False,
|
| 44 |
+
similar_image_filter_threshold: float = 0.98,
|
| 45 |
+
similar_image_filter_max_skip_frame: int = 10,
|
| 46 |
+
use_denoising_batch: bool = True,
|
| 47 |
+
cfg_type: Literal["none", "full", "self", "initialize"] = "self",
|
| 48 |
+
seed: int = 2,
|
| 49 |
+
use_safety_checker: bool = False,
|
| 50 |
+
):
|
| 51 |
+
"""
|
| 52 |
+
Initializes the StreamDiffusionWrapper.
|
| 53 |
+
|
| 54 |
+
Parameters
|
| 55 |
+
----------
|
| 56 |
+
model_id_or_path : str
|
| 57 |
+
The model id or path to load.
|
| 58 |
+
t_index_list : List[int]
|
| 59 |
+
The t_index_list to use for inference.
|
| 60 |
+
lora_dict : Optional[Dict[str, float]], optional
|
| 61 |
+
The lora_dict to load, by default None.
|
| 62 |
+
Keys are the LoRA names and values are the LoRA scales.
|
| 63 |
+
Example: {"LoRA_1" : 0.5 , "LoRA_2" : 0.7 ,...}
|
| 64 |
+
mode : Literal["img2img", "txt2img"], optional
|
| 65 |
+
txt2img or img2img, by default "img2img".
|
| 66 |
+
output_type : Literal["pil", "pt", "np", "latent"], optional
|
| 67 |
+
The output type of image, by default "pil".
|
| 68 |
+
lcm_lora_id : Optional[str], optional
|
| 69 |
+
The lcm_lora_id to load, by default None.
|
| 70 |
+
If None, the default LCM-LoRA
|
| 71 |
+
("latent-consistency/lcm-lora-sdv1-5") will be used.
|
| 72 |
+
vae_id : Optional[str], optional
|
| 73 |
+
The vae_id to load, by default None.
|
| 74 |
+
If None, the default TinyVAE
|
| 75 |
+
("madebyollin/taesd") will be used.
|
| 76 |
+
device : Literal["cpu", "cuda"], optional
|
| 77 |
+
The device to use for inference, by default "cuda".
|
| 78 |
+
dtype : torch.dtype, optional
|
| 79 |
+
The dtype for inference, by default torch.float16.
|
| 80 |
+
frame_buffer_size : int, optional
|
| 81 |
+
The frame buffer size for denoising batch, by default 1.
|
| 82 |
+
width : int, optional
|
| 83 |
+
The width of the image, by default 512.
|
| 84 |
+
height : int, optional
|
| 85 |
+
The height of the image, by default 512.
|
| 86 |
+
warmup : int, optional
|
| 87 |
+
The number of warmup steps to perform, by default 10.
|
| 88 |
+
acceleration : Literal["none", "xformers", "tensorrt"], optional
|
| 89 |
+
The acceleration method, by default "tensorrt".
|
| 90 |
+
do_add_noise : bool, optional
|
| 91 |
+
Whether to add noise for following denoising steps or not,
|
| 92 |
+
by default True.
|
| 93 |
+
device_ids : Optional[List[int]], optional
|
| 94 |
+
The device ids to use for DataParallel, by default None.
|
| 95 |
+
use_lcm_lora : bool, optional
|
| 96 |
+
Whether to use LCM-LoRA or not, by default True.
|
| 97 |
+
use_tiny_vae : bool, optional
|
| 98 |
+
Whether to use TinyVAE or not, by default True.
|
| 99 |
+
enable_similar_image_filter : bool, optional
|
| 100 |
+
Whether to enable similar image filter or not,
|
| 101 |
+
by default False.
|
| 102 |
+
similar_image_filter_threshold : float, optional
|
| 103 |
+
The threshold for similar image filter, by default 0.98.
|
| 104 |
+
similar_image_filter_max_skip_frame : int, optional
|
| 105 |
+
The max skip frame for similar image filter, by default 10.
|
| 106 |
+
use_denoising_batch : bool, optional
|
| 107 |
+
Whether to use denoising batch or not, by default True.
|
| 108 |
+
cfg_type : Literal["none", "full", "self", "initialize"],
|
| 109 |
+
optional
|
| 110 |
+
The cfg_type for img2img mode, by default "self".
|
| 111 |
+
You cannot use anything other than "none" for txt2img mode.
|
| 112 |
+
seed : int, optional
|
| 113 |
+
The seed, by default 2.
|
| 114 |
+
use_safety_checker : bool, optional
|
| 115 |
+
Whether to use safety checker or not, by default False.
|
| 116 |
+
"""
|
| 117 |
+
self.sd_turbo = "turbo" in model_id_or_path
|
| 118 |
+
|
| 119 |
+
if mode == "txt2img":
|
| 120 |
+
if cfg_type != "none":
|
| 121 |
+
raise ValueError(
|
| 122 |
+
f"txt2img mode accepts only cfg_type = 'none', but got {cfg_type}"
|
| 123 |
+
)
|
| 124 |
+
if use_denoising_batch and frame_buffer_size > 1:
|
| 125 |
+
if not self.sd_turbo:
|
| 126 |
+
raise ValueError(
|
| 127 |
+
"txt2img mode cannot use denoising batch with frame_buffer_size > 1."
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
if mode == "img2img":
|
| 131 |
+
if not use_denoising_batch:
|
| 132 |
+
raise NotImplementedError(
|
| 133 |
+
"img2img mode must use denoising batch for now."
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
self.device = device
|
| 137 |
+
self.dtype = dtype
|
| 138 |
+
self.width = width
|
| 139 |
+
self.height = height
|
| 140 |
+
self.mode = mode
|
| 141 |
+
self.output_type = output_type
|
| 142 |
+
self.frame_buffer_size = frame_buffer_size
|
| 143 |
+
self.batch_size = (
|
| 144 |
+
len(t_index_list) * frame_buffer_size
|
| 145 |
+
if use_denoising_batch
|
| 146 |
+
else frame_buffer_size
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
self.use_denoising_batch = use_denoising_batch
|
| 150 |
+
self.use_safety_checker = use_safety_checker
|
| 151 |
+
|
| 152 |
+
self.stream: StreamDiffusion = self._load_model(
|
| 153 |
+
model_id_or_path=model_id_or_path,
|
| 154 |
+
lora_dict=lora_dict,
|
| 155 |
+
lcm_lora_id=lcm_lora_id,
|
| 156 |
+
vae_id=vae_id,
|
| 157 |
+
t_index_list=t_index_list,
|
| 158 |
+
acceleration=acceleration,
|
| 159 |
+
warmup=warmup,
|
| 160 |
+
do_add_noise=do_add_noise,
|
| 161 |
+
use_lcm_lora=use_lcm_lora,
|
| 162 |
+
use_tiny_vae=use_tiny_vae,
|
| 163 |
+
cfg_type=cfg_type,
|
| 164 |
+
seed=seed,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
if device_ids is not None:
|
| 168 |
+
self.stream.unet = torch.nn.DataParallel(
|
| 169 |
+
self.stream.unet, device_ids=device_ids
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
if enable_similar_image_filter:
|
| 173 |
+
self.stream.enable_similar_image_filter(similar_image_filter_threshold, similar_image_filter_max_skip_frame)
|
| 174 |
+
|
| 175 |
+
def prepare(
|
| 176 |
+
self,
|
| 177 |
+
prompt: str,
|
| 178 |
+
negative_prompt: str = "",
|
| 179 |
+
num_inference_steps: int = 50,
|
| 180 |
+
guidance_scale: float = 1.2,
|
| 181 |
+
delta: float = 1.0,
|
| 182 |
+
) -> None:
|
| 183 |
+
"""
|
| 184 |
+
Prepares the model for inference.
|
| 185 |
+
|
| 186 |
+
Parameters
|
| 187 |
+
----------
|
| 188 |
+
prompt : str
|
| 189 |
+
The prompt to generate images from.
|
| 190 |
+
num_inference_steps : int, optional
|
| 191 |
+
The number of inference steps to perform, by default 50.
|
| 192 |
+
guidance_scale : float, optional
|
| 193 |
+
The guidance scale to use, by default 1.2.
|
| 194 |
+
delta : float, optional
|
| 195 |
+
The delta multiplier of virtual residual noise,
|
| 196 |
+
by default 1.0.
|
| 197 |
+
"""
|
| 198 |
+
self.stream.prepare(
|
| 199 |
+
prompt,
|
| 200 |
+
negative_prompt,
|
| 201 |
+
num_inference_steps=num_inference_steps,
|
| 202 |
+
guidance_scale=guidance_scale,
|
| 203 |
+
delta=delta,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
def __call__(
|
| 207 |
+
self,
|
| 208 |
+
image: Optional[Union[str, Image.Image, torch.Tensor]] = None,
|
| 209 |
+
prompt: Optional[str] = None,
|
| 210 |
+
) -> Union[Image.Image, List[Image.Image]]:
|
| 211 |
+
"""
|
| 212 |
+
Performs img2img or txt2img based on the mode.
|
| 213 |
+
|
| 214 |
+
Parameters
|
| 215 |
+
----------
|
| 216 |
+
image : Optional[Union[str, Image.Image, torch.Tensor]]
|
| 217 |
+
The image to generate from.
|
| 218 |
+
prompt : Optional[str]
|
| 219 |
+
The prompt to generate images from.
|
| 220 |
+
|
| 221 |
+
Returns
|
| 222 |
+
-------
|
| 223 |
+
Union[Image.Image, List[Image.Image]]
|
| 224 |
+
The generated image.
|
| 225 |
+
"""
|
| 226 |
+
if self.mode == "img2img":
|
| 227 |
+
return self.img2img(image)
|
| 228 |
+
else:
|
| 229 |
+
return self.txt2img(prompt)
|
| 230 |
+
|
| 231 |
+
def txt2img(
|
| 232 |
+
self, prompt: Optional[str] = None
|
| 233 |
+
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
|
| 234 |
+
"""
|
| 235 |
+
Performs txt2img.
|
| 236 |
+
|
| 237 |
+
Parameters
|
| 238 |
+
----------
|
| 239 |
+
prompt : Optional[str]
|
| 240 |
+
The prompt to generate images from.
|
| 241 |
+
|
| 242 |
+
Returns
|
| 243 |
+
-------
|
| 244 |
+
Union[Image.Image, List[Image.Image]]
|
| 245 |
+
The generated image.
|
| 246 |
+
"""
|
| 247 |
+
if prompt is not None:
|
| 248 |
+
self.stream.update_prompt(prompt)
|
| 249 |
+
|
| 250 |
+
if self.sd_turbo:
|
| 251 |
+
image_tensor = self.stream.txt2img_sd_turbo(self.batch_size)
|
| 252 |
+
else:
|
| 253 |
+
image_tensor = self.stream.txt2img(self.frame_buffer_size)
|
| 254 |
+
image = self.postprocess_image(image_tensor, output_type=self.output_type)
|
| 255 |
+
|
| 256 |
+
if self.use_safety_checker:
|
| 257 |
+
safety_checker_input = self.feature_extractor(
|
| 258 |
+
image, return_tensors="pt"
|
| 259 |
+
).to(self.device)
|
| 260 |
+
_, has_nsfw_concept = self.safety_checker(
|
| 261 |
+
images=image_tensor.to(self.dtype),
|
| 262 |
+
clip_input=safety_checker_input.pixel_values.to(self.dtype),
|
| 263 |
+
)
|
| 264 |
+
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image
|
| 265 |
+
|
| 266 |
+
return image
|
| 267 |
+
|
| 268 |
+
def img2img(
|
| 269 |
+
self, image: Union[str, Image.Image, torch.Tensor]
|
| 270 |
+
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
|
| 271 |
+
"""
|
| 272 |
+
Performs img2img.
|
| 273 |
+
|
| 274 |
+
Parameters
|
| 275 |
+
----------
|
| 276 |
+
image : Union[str, Image.Image, torch.Tensor]
|
| 277 |
+
The image to generate from.
|
| 278 |
+
|
| 279 |
+
Returns
|
| 280 |
+
-------
|
| 281 |
+
Image.Image
|
| 282 |
+
The generated image.
|
| 283 |
+
"""
|
| 284 |
+
if isinstance(image, str) or isinstance(image, Image.Image):
|
| 285 |
+
image = self.preprocess_image(image)
|
| 286 |
+
|
| 287 |
+
image_tensor = self.stream(image)
|
| 288 |
+
image = self.postprocess_image(image_tensor, output_type=self.output_type)
|
| 289 |
+
|
| 290 |
+
if self.use_safety_checker:
|
| 291 |
+
safety_checker_input = self.feature_extractor(
|
| 292 |
+
image, return_tensors="pt"
|
| 293 |
+
).to(self.device)
|
| 294 |
+
_, has_nsfw_concept = self.safety_checker(
|
| 295 |
+
images=image_tensor.to(self.dtype),
|
| 296 |
+
clip_input=safety_checker_input.pixel_values.to(self.dtype),
|
| 297 |
+
)
|
| 298 |
+
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image
|
| 299 |
+
|
| 300 |
+
return image
|
| 301 |
+
|
| 302 |
+
def preprocess_image(self, image: Union[str, Image.Image]) -> torch.Tensor:
|
| 303 |
+
"""
|
| 304 |
+
Preprocesses the image.
|
| 305 |
+
|
| 306 |
+
Parameters
|
| 307 |
+
----------
|
| 308 |
+
image : Union[str, Image.Image, torch.Tensor]
|
| 309 |
+
The image to preprocess.
|
| 310 |
+
|
| 311 |
+
Returns
|
| 312 |
+
-------
|
| 313 |
+
torch.Tensor
|
| 314 |
+
The preprocessed image.
|
| 315 |
+
"""
|
| 316 |
+
if isinstance(image, str):
|
| 317 |
+
image = Image.open(image).convert("RGB").resize((self.width, self.height))
|
| 318 |
+
if isinstance(image, Image.Image):
|
| 319 |
+
image = image.convert("RGB").resize((self.width, self.height))
|
| 320 |
+
|
| 321 |
+
return self.stream.image_processor.preprocess(
|
| 322 |
+
image, self.height, self.width
|
| 323 |
+
).to(device=self.device, dtype=self.dtype)
|
| 324 |
+
|
| 325 |
+
def postprocess_image(
|
| 326 |
+
self, image_tensor: torch.Tensor, output_type: str = "pil"
|
| 327 |
+
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
|
| 328 |
+
"""
|
| 329 |
+
Postprocesses the image.
|
| 330 |
+
|
| 331 |
+
Parameters
|
| 332 |
+
----------
|
| 333 |
+
image_tensor : torch.Tensor
|
| 334 |
+
The image tensor to postprocess.
|
| 335 |
+
|
| 336 |
+
Returns
|
| 337 |
+
-------
|
| 338 |
+
Union[Image.Image, List[Image.Image]]
|
| 339 |
+
The postprocessed image.
|
| 340 |
+
"""
|
| 341 |
+
if self.frame_buffer_size > 1:
|
| 342 |
+
return postprocess_image(image_tensor.cpu(), output_type=output_type)
|
| 343 |
+
else:
|
| 344 |
+
return postprocess_image(image_tensor.cpu(), output_type=output_type)[0]
|
| 345 |
+
|
| 346 |
+
def _load_model(
|
| 347 |
+
self,
|
| 348 |
+
model_id_or_path: str,
|
| 349 |
+
t_index_list: List[int],
|
| 350 |
+
lora_dict: Optional[Dict[str, float]] = None,
|
| 351 |
+
lcm_lora_id: Optional[str] = None,
|
| 352 |
+
vae_id: Optional[str] = None,
|
| 353 |
+
acceleration: Literal["none", "sfast", "tensorrt"] = "tensorrt",
|
| 354 |
+
warmup: int = 10,
|
| 355 |
+
do_add_noise: bool = True,
|
| 356 |
+
use_lcm_lora: bool = True,
|
| 357 |
+
use_tiny_vae: bool = True,
|
| 358 |
+
cfg_type: Literal["none", "full", "self", "initialize"] = "self",
|
| 359 |
+
seed: int = 2,
|
| 360 |
+
) -> StreamDiffusion:
|
| 361 |
+
"""
|
| 362 |
+
Loads the model.
|
| 363 |
+
|
| 364 |
+
This method does the following:
|
| 365 |
+
|
| 366 |
+
1. Loads the model from the model_id_or_path.
|
| 367 |
+
2. Loads and fuses the LCM-LoRA model from the lcm_lora_id if needed.
|
| 368 |
+
3. Loads the VAE model from the vae_id if needed.
|
| 369 |
+
4. Enables acceleration if needed.
|
| 370 |
+
5. Prepares the model for inference.
|
| 371 |
+
6. Load the safety checker if needed.
|
| 372 |
+
|
| 373 |
+
Parameters
|
| 374 |
+
----------
|
| 375 |
+
model_id_or_path : str
|
| 376 |
+
The model id or path to load.
|
| 377 |
+
t_index_list : List[int]
|
| 378 |
+
The t_index_list to use for inference.
|
| 379 |
+
lora_dict : Optional[Dict[str, float]], optional
|
| 380 |
+
The lora_dict to load, by default None.
|
| 381 |
+
Keys are the LoRA names and values are the LoRA scales.
|
| 382 |
+
Example: {"LoRA_1" : 0.5 , "LoRA_2" : 0.7 ,...}
|
| 383 |
+
lcm_lora_id : Optional[str], optional
|
| 384 |
+
The lcm_lora_id to load, by default None.
|
| 385 |
+
vae_id : Optional[str], optional
|
| 386 |
+
The vae_id to load, by default None.
|
| 387 |
+
acceleration : Literal["none", "xfomers", "sfast", "tensorrt"], optional
|
| 388 |
+
The acceleration method, by default "tensorrt".
|
| 389 |
+
warmup : int, optional
|
| 390 |
+
The number of warmup steps to perform, by default 10.
|
| 391 |
+
do_add_noise : bool, optional
|
| 392 |
+
Whether to add noise for following denoising steps or not,
|
| 393 |
+
by default True.
|
| 394 |
+
use_lcm_lora : bool, optional
|
| 395 |
+
Whether to use LCM-LoRA or not, by default True.
|
| 396 |
+
use_tiny_vae : bool, optional
|
| 397 |
+
Whether to use TinyVAE or not, by default True.
|
| 398 |
+
cfg_type : Literal["none", "full", "self", "initialize"],
|
| 399 |
+
optional
|
| 400 |
+
The cfg_type for img2img mode, by default "self".
|
| 401 |
+
You cannot use anything other than "none" for txt2img mode.
|
| 402 |
+
seed : int, optional
|
| 403 |
+
The seed, by default 2.
|
| 404 |
+
|
| 405 |
+
Returns
|
| 406 |
+
-------
|
| 407 |
+
StreamDiffusion
|
| 408 |
+
The loaded model.
|
| 409 |
+
"""
|
| 410 |
+
|
| 411 |
+
try: # Load from local directory
|
| 412 |
+
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
|
| 413 |
+
model_id_or_path,
|
| 414 |
+
).to(device=self.device, dtype=self.dtype)
|
| 415 |
+
|
| 416 |
+
except ValueError: # Load from huggingface
|
| 417 |
+
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_single_file(
|
| 418 |
+
model_id_or_path,
|
| 419 |
+
).to(device=self.device, dtype=self.dtype)
|
| 420 |
+
except Exception: # No model found
|
| 421 |
+
traceback.print_exc()
|
| 422 |
+
print("Model load has failed. Doesn't exist.")
|
| 423 |
+
exit()
|
| 424 |
+
|
| 425 |
+
stream = StreamDiffusion(
|
| 426 |
+
pipe=pipe,
|
| 427 |
+
t_index_list=t_index_list,
|
| 428 |
+
torch_dtype=self.dtype,
|
| 429 |
+
width=self.width,
|
| 430 |
+
height=self.height,
|
| 431 |
+
do_add_noise=do_add_noise,
|
| 432 |
+
frame_buffer_size=self.frame_buffer_size,
|
| 433 |
+
use_denoising_batch=self.use_denoising_batch,
|
| 434 |
+
cfg_type=cfg_type,
|
| 435 |
+
)
|
| 436 |
+
if not self.sd_turbo:
|
| 437 |
+
if use_lcm_lora:
|
| 438 |
+
if lcm_lora_id is not None:
|
| 439 |
+
stream.load_lcm_lora(
|
| 440 |
+
pretrained_model_name_or_path_or_dict=lcm_lora_id
|
| 441 |
+
)
|
| 442 |
+
else:
|
| 443 |
+
stream.load_lcm_lora()
|
| 444 |
+
stream.fuse_lora()
|
| 445 |
+
|
| 446 |
+
if lora_dict is not None:
|
| 447 |
+
for lora_name, lora_scale in lora_dict.items():
|
| 448 |
+
stream.load_lora(lora_name)
|
| 449 |
+
stream.fuse_lora(lora_scale=lora_scale)
|
| 450 |
+
print(f"Use LoRA: {lora_name} in weights {lora_scale}")
|
| 451 |
+
|
| 452 |
+
if use_tiny_vae:
|
| 453 |
+
if vae_id is not None:
|
| 454 |
+
stream.vae = AutoencoderTiny.from_pretrained(vae_id).to(
|
| 455 |
+
device=pipe.device, dtype=pipe.dtype
|
| 456 |
+
)
|
| 457 |
+
else:
|
| 458 |
+
stream.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd").to(
|
| 459 |
+
device=pipe.device, dtype=pipe.dtype
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
try:
|
| 463 |
+
if acceleration == "xformers":
|
| 464 |
+
stream.pipe.enable_xformers_memory_efficient_attention()
|
| 465 |
+
if acceleration == "tensorrt":
|
| 466 |
+
from streamdiffusion.acceleration.tensorrt import (
|
| 467 |
+
TorchVAEEncoder,
|
| 468 |
+
compile_unet,
|
| 469 |
+
compile_vae_decoder,
|
| 470 |
+
compile_vae_encoder,
|
| 471 |
+
)
|
| 472 |
+
from streamdiffusion.acceleration.tensorrt.engine import (
|
| 473 |
+
AutoencoderKLEngine,
|
| 474 |
+
UNet2DConditionModelEngine,
|
| 475 |
+
)
|
| 476 |
+
from streamdiffusion.acceleration.tensorrt.models import (
|
| 477 |
+
VAE,
|
| 478 |
+
UNet,
|
| 479 |
+
VAEEncoder,
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
def create_prefix(
|
| 483 |
+
model_id_or_path: str,
|
| 484 |
+
max_batch_size: int,
|
| 485 |
+
min_batch_size: int,
|
| 486 |
+
):
|
| 487 |
+
maybe_path = Path(model_id_or_path)
|
| 488 |
+
if maybe_path.exists():
|
| 489 |
+
return f"{maybe_path.stem}--lcm_lora-{use_lcm_lora}--tiny_vae-{use_tiny_vae}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--mode-{self.mode}"
|
| 490 |
+
else:
|
| 491 |
+
return f"{model_id_or_path}--lcm_lora-{use_lcm_lora}--tiny_vae-{use_tiny_vae}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--mode-{self.mode}"
|
| 492 |
+
|
| 493 |
+
engine_dir = os.path.join("engines")
|
| 494 |
+
unet_path = os.path.join(
|
| 495 |
+
engine_dir,
|
| 496 |
+
create_prefix(
|
| 497 |
+
model_id_or_path=model_id_or_path,
|
| 498 |
+
max_batch_size=stream.trt_unet_batch_size,
|
| 499 |
+
min_batch_size=stream.trt_unet_batch_size,
|
| 500 |
+
),
|
| 501 |
+
"unet.engine",
|
| 502 |
+
)
|
| 503 |
+
vae_encoder_path = os.path.join(
|
| 504 |
+
engine_dir,
|
| 505 |
+
create_prefix(
|
| 506 |
+
model_id_or_path=model_id_or_path,
|
| 507 |
+
max_batch_size=self.batch_size
|
| 508 |
+
if self.mode == "txt2img"
|
| 509 |
+
else stream.frame_bff_size,
|
| 510 |
+
min_batch_size=self.batch_size
|
| 511 |
+
if self.mode == "txt2img"
|
| 512 |
+
else stream.frame_bff_size,
|
| 513 |
+
),
|
| 514 |
+
"vae_encoder.engine",
|
| 515 |
+
)
|
| 516 |
+
vae_decoder_path = os.path.join(
|
| 517 |
+
engine_dir,
|
| 518 |
+
create_prefix(
|
| 519 |
+
model_id_or_path=model_id_or_path,
|
| 520 |
+
max_batch_size=self.batch_size
|
| 521 |
+
if self.mode == "txt2img"
|
| 522 |
+
else stream.frame_bff_size,
|
| 523 |
+
min_batch_size=self.batch_size
|
| 524 |
+
if self.mode == "txt2img"
|
| 525 |
+
else stream.frame_bff_size,
|
| 526 |
+
),
|
| 527 |
+
"vae_decoder.engine",
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
if not os.path.exists(unet_path):
|
| 531 |
+
os.makedirs(os.path.dirname(unet_path), exist_ok=True)
|
| 532 |
+
unet_model = UNet(
|
| 533 |
+
fp16=True,
|
| 534 |
+
device=stream.device,
|
| 535 |
+
max_batch_size=stream.trt_unet_batch_size,
|
| 536 |
+
min_batch_size=stream.trt_unet_batch_size,
|
| 537 |
+
embedding_dim=stream.text_encoder.config.hidden_size,
|
| 538 |
+
unet_dim=stream.unet.config.in_channels,
|
| 539 |
+
)
|
| 540 |
+
compile_unet(
|
| 541 |
+
stream.unet,
|
| 542 |
+
unet_model,
|
| 543 |
+
unet_path + ".onnx",
|
| 544 |
+
unet_path + ".opt.onnx",
|
| 545 |
+
unet_path,
|
| 546 |
+
opt_batch_size=stream.trt_unet_batch_size,
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
if not os.path.exists(vae_decoder_path):
|
| 550 |
+
os.makedirs(os.path.dirname(vae_decoder_path), exist_ok=True)
|
| 551 |
+
stream.vae.forward = stream.vae.decode
|
| 552 |
+
vae_decoder_model = VAE(
|
| 553 |
+
device=stream.device,
|
| 554 |
+
max_batch_size=self.batch_size
|
| 555 |
+
if self.mode == "txt2img"
|
| 556 |
+
else stream.frame_bff_size,
|
| 557 |
+
min_batch_size=self.batch_size
|
| 558 |
+
if self.mode == "txt2img"
|
| 559 |
+
else stream.frame_bff_size,
|
| 560 |
+
)
|
| 561 |
+
compile_vae_decoder(
|
| 562 |
+
stream.vae,
|
| 563 |
+
vae_decoder_model,
|
| 564 |
+
vae_decoder_path + ".onnx",
|
| 565 |
+
vae_decoder_path + ".opt.onnx",
|
| 566 |
+
vae_decoder_path,
|
| 567 |
+
opt_batch_size=self.batch_size
|
| 568 |
+
if self.mode == "txt2img"
|
| 569 |
+
else stream.frame_bff_size,
|
| 570 |
+
)
|
| 571 |
+
delattr(stream.vae, "forward")
|
| 572 |
+
|
| 573 |
+
if not os.path.exists(vae_encoder_path):
|
| 574 |
+
os.makedirs(os.path.dirname(vae_encoder_path), exist_ok=True)
|
| 575 |
+
vae_encoder = TorchVAEEncoder(stream.vae).to(torch.device("cuda"))
|
| 576 |
+
vae_encoder_model = VAEEncoder(
|
| 577 |
+
device=stream.device,
|
| 578 |
+
max_batch_size=self.batch_size
|
| 579 |
+
if self.mode == "txt2img"
|
| 580 |
+
else stream.frame_bff_size,
|
| 581 |
+
min_batch_size=self.batch_size
|
| 582 |
+
if self.mode == "txt2img"
|
| 583 |
+
else stream.frame_bff_size,
|
| 584 |
+
)
|
| 585 |
+
compile_vae_encoder(
|
| 586 |
+
vae_encoder,
|
| 587 |
+
vae_encoder_model,
|
| 588 |
+
vae_encoder_path + ".onnx",
|
| 589 |
+
vae_encoder_path + ".opt.onnx",
|
| 590 |
+
vae_encoder_path,
|
| 591 |
+
opt_batch_size=self.batch_size
|
| 592 |
+
if self.mode == "txt2img"
|
| 593 |
+
else stream.frame_bff_size,
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
cuda_steram = cuda.Stream()
|
| 597 |
+
|
| 598 |
+
vae_config = stream.vae.config
|
| 599 |
+
vae_dtype = stream.vae.dtype
|
| 600 |
+
|
| 601 |
+
stream.unet = UNet2DConditionModelEngine(
|
| 602 |
+
unet_path, cuda_steram, use_cuda_graph=False
|
| 603 |
+
)
|
| 604 |
+
stream.vae = AutoencoderKLEngine(
|
| 605 |
+
vae_encoder_path,
|
| 606 |
+
vae_decoder_path,
|
| 607 |
+
cuda_steram,
|
| 608 |
+
stream.pipe.vae_scale_factor,
|
| 609 |
+
use_cuda_graph=False,
|
| 610 |
+
)
|
| 611 |
+
setattr(stream.vae, "config", vae_config)
|
| 612 |
+
setattr(stream.vae, "dtype", vae_dtype)
|
| 613 |
+
|
| 614 |
+
gc.collect()
|
| 615 |
+
torch.cuda.empty_cache()
|
| 616 |
+
|
| 617 |
+
print("TensorRT acceleration enabled.")
|
| 618 |
+
if acceleration == "sfast":
|
| 619 |
+
from streamdiffusion.acceleration.sfast import (
|
| 620 |
+
accelerate_with_stable_fast,
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
stream = accelerate_with_stable_fast(stream)
|
| 624 |
+
print("StableFast acceleration enabled.")
|
| 625 |
+
except Exception:
|
| 626 |
+
traceback.print_exc()
|
| 627 |
+
print("Acceleration has failed. Falling back to normal mode.")
|
| 628 |
+
|
| 629 |
+
stream.prepare(
|
| 630 |
+
"",
|
| 631 |
+
"",
|
| 632 |
+
num_inference_steps=50,
|
| 633 |
+
guidance_scale=1.1
|
| 634 |
+
if stream.cfg_type in ["full", "self", "initialize"]
|
| 635 |
+
else 1.0,
|
| 636 |
+
generator=torch.manual_seed(seed),
|
| 637 |
+
seed=seed,
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
+
if self.use_safety_checker:
|
| 641 |
+
from transformers import CLIPFeatureExtractor
|
| 642 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
| 643 |
+
StableDiffusionSafetyChecker,
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
| 647 |
+
"CompVis/stable-diffusion-safety-checker"
|
| 648 |
+
).to(pipe.device)
|
| 649 |
+
self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
| 650 |
+
"openai/clip-vit-base-patch32"
|
| 651 |
+
)
|
| 652 |
+
self.nsfw_fallback_img = Image.new("RGB", (512, 512), (0, 0, 0))
|
| 653 |
+
|
| 654 |
+
return stream
|