Spaces:
Runtime error
Runtime error
Delete server/wrapper.py
Browse files- server/wrapper.py +0 -529
server/wrapper.py
DELETED
|
@@ -1,529 +0,0 @@
|
|
| 1 |
-
import gc
|
| 2 |
-
import os
|
| 3 |
-
import traceback
|
| 4 |
-
from typing import List, Literal, Optional, Union
|
| 5 |
-
|
| 6 |
-
import numpy as np
|
| 7 |
-
import torch
|
| 8 |
-
from diffusers import AutoencoderTiny, StableDiffusionPipeline
|
| 9 |
-
from PIL import Image
|
| 10 |
-
from polygraphy import cuda
|
| 11 |
-
|
| 12 |
-
from streamdiffusion import StreamDiffusion
|
| 13 |
-
from streamdiffusion.image_utils import postprocess_image
|
| 14 |
-
|
| 15 |
-
torch.set_grad_enabled(False)
|
| 16 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 17 |
-
torch.backends.cudnn.allow_tf32 = True
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
class StreamDiffusionWrapper:
|
| 21 |
-
def __init__(
|
| 22 |
-
self,
|
| 23 |
-
model_id: str,
|
| 24 |
-
t_index_list: List[int],
|
| 25 |
-
mode: Literal["img2img", "txt2img"] = "img2img",
|
| 26 |
-
output_type: Literal["pil", "pt", "np", "latent"] = "pil",
|
| 27 |
-
lcm_lora_id: Optional[str] = None,
|
| 28 |
-
vae_id: Optional[str] = None,
|
| 29 |
-
device: Literal["cpu", "cuda"] = "cuda",
|
| 30 |
-
dtype: torch.dtype = torch.float16,
|
| 31 |
-
frame_buffer_size: int = 1,
|
| 32 |
-
width: int = 512,
|
| 33 |
-
height: int = 512,
|
| 34 |
-
warmup: int = 10,
|
| 35 |
-
acceleration: Literal["none", "xformers", "sfast", "tensorrt"] = "xformers",
|
| 36 |
-
is_drawing: bool = True,
|
| 37 |
-
device_ids: Optional[List[int]] = None,
|
| 38 |
-
use_lcm_lora: bool = True,
|
| 39 |
-
use_tiny_vae: bool = True,
|
| 40 |
-
enable_similar_image_filter: bool = False,
|
| 41 |
-
similar_image_filter_threshold: float = 0.98,
|
| 42 |
-
use_denoising_batch: bool = True,
|
| 43 |
-
cfg_type: Literal["none", "full", "self", "initialize"] = "none",
|
| 44 |
-
use_safety_checker: bool = False,
|
| 45 |
-
):
|
| 46 |
-
if mode == "txt2img":
|
| 47 |
-
if cfg_type != "none":
|
| 48 |
-
raise ValueError(
|
| 49 |
-
f"txt2img mode accepts only cfg_type = 'none', but got {cfg_type}"
|
| 50 |
-
)
|
| 51 |
-
if use_denoising_batch and frame_buffer_size > 1:
|
| 52 |
-
raise ValueError(
|
| 53 |
-
"txt2img mode cannot use denoising batch with frame_buffer_size > 1."
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
if mode == "img2img":
|
| 57 |
-
if not use_denoising_batch:
|
| 58 |
-
raise NotImplementedError(
|
| 59 |
-
"img2img mode must use denoising batch for now."
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
self.sd_turbo = "turbo" in model_id
|
| 63 |
-
self.device = device
|
| 64 |
-
self.dtype = dtype
|
| 65 |
-
self.width = width
|
| 66 |
-
self.height = height
|
| 67 |
-
self.mode = mode
|
| 68 |
-
self.output_type = output_type
|
| 69 |
-
self.frame_buffer_size = frame_buffer_size
|
| 70 |
-
self.batch_size = (
|
| 71 |
-
len(t_index_list) * frame_buffer_size
|
| 72 |
-
if use_denoising_batch
|
| 73 |
-
else frame_buffer_size
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
self.use_denoising_batch = use_denoising_batch
|
| 77 |
-
self.use_safety_checker = use_safety_checker
|
| 78 |
-
|
| 79 |
-
self.stream = self._load_model(
|
| 80 |
-
model_id=model_id,
|
| 81 |
-
lcm_lora_id=lcm_lora_id,
|
| 82 |
-
vae_id=vae_id,
|
| 83 |
-
t_index_list=t_index_list,
|
| 84 |
-
acceleration=acceleration,
|
| 85 |
-
warmup=warmup,
|
| 86 |
-
is_drawing=is_drawing,
|
| 87 |
-
use_lcm_lora=use_lcm_lora,
|
| 88 |
-
use_tiny_vae=use_tiny_vae,
|
| 89 |
-
cfg_type=cfg_type,
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
if device_ids is not None:
|
| 93 |
-
self.stream.unet = torch.nn.DataParallel(
|
| 94 |
-
self.stream.unet, device_ids=device_ids
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
if enable_similar_image_filter:
|
| 98 |
-
self.stream.enable_similar_image_filter(similar_image_filter_threshold)
|
| 99 |
-
|
| 100 |
-
def prepare(
|
| 101 |
-
self,
|
| 102 |
-
prompt: str,
|
| 103 |
-
negative_prompt: str = "",
|
| 104 |
-
num_inference_steps: int = 50,
|
| 105 |
-
guidance_scale: float = 1.2,
|
| 106 |
-
delta: float = 1.0,
|
| 107 |
-
) -> None:
|
| 108 |
-
"""
|
| 109 |
-
Prepares the model for inference.
|
| 110 |
-
|
| 111 |
-
Parameters
|
| 112 |
-
----------
|
| 113 |
-
prompt : str
|
| 114 |
-
The prompt to generate images from.
|
| 115 |
-
num_inference_steps : int, optional
|
| 116 |
-
The number of inference steps to perform, by default 50.
|
| 117 |
-
"""
|
| 118 |
-
self.stream.prepare(
|
| 119 |
-
prompt,
|
| 120 |
-
negative_prompt,
|
| 121 |
-
num_inference_steps=num_inference_steps,
|
| 122 |
-
guidance_scale=guidance_scale,
|
| 123 |
-
delta=delta,
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
def __call__(
|
| 127 |
-
self,
|
| 128 |
-
image: Optional[Union[str, Image.Image, torch.Tensor]] = None,
|
| 129 |
-
prompt: Optional[str] = None,
|
| 130 |
-
) -> Union[Image.Image, List[Image.Image]]:
|
| 131 |
-
"""
|
| 132 |
-
Performs img2img or txt2img based on the mode.
|
| 133 |
-
|
| 134 |
-
Parameters
|
| 135 |
-
----------
|
| 136 |
-
image : Optional[Union[str, Image.Image, torch.Tensor]]
|
| 137 |
-
The image to generate from.
|
| 138 |
-
prompt : Optional[str]
|
| 139 |
-
The prompt to generate images from.
|
| 140 |
-
|
| 141 |
-
Returns
|
| 142 |
-
-------
|
| 143 |
-
Union[Image.Image, List[Image.Image]]
|
| 144 |
-
The generated image.
|
| 145 |
-
"""
|
| 146 |
-
if self.mode == "img2img":
|
| 147 |
-
return self.img2img(image)
|
| 148 |
-
else:
|
| 149 |
-
return self.txt2img(prompt)
|
| 150 |
-
|
| 151 |
-
def txt2img(
|
| 152 |
-
self, prompt: str
|
| 153 |
-
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
|
| 154 |
-
"""
|
| 155 |
-
Performs txt2img.
|
| 156 |
-
|
| 157 |
-
Parameters
|
| 158 |
-
----------
|
| 159 |
-
prompt : str
|
| 160 |
-
The prompt to generate images from.
|
| 161 |
-
|
| 162 |
-
Returns
|
| 163 |
-
-------
|
| 164 |
-
Union[Image.Image, List[Image.Image]]
|
| 165 |
-
The generated image.
|
| 166 |
-
"""
|
| 167 |
-
self.stream.update_prompt(prompt)
|
| 168 |
-
|
| 169 |
-
if self.sd_turbo:
|
| 170 |
-
image_tensor = self.stream.txt2img_sd_turbo(self.batch_size)
|
| 171 |
-
else:
|
| 172 |
-
image_tensor = self.stream.txt2img(self.frame_buffer_size)
|
| 173 |
-
image = self.postprocess_image(image_tensor, output_type=self.output_type)
|
| 174 |
-
|
| 175 |
-
if self.use_safety_checker:
|
| 176 |
-
safety_checker_input = self.feature_extractor(
|
| 177 |
-
image, return_tensors="pt"
|
| 178 |
-
).to(self.device)
|
| 179 |
-
_, has_nsfw_concept = self.safety_checker(
|
| 180 |
-
images=image_tensor.to(self.dtype),
|
| 181 |
-
clip_input=safety_checker_input.pixel_values.to(self.dtype),
|
| 182 |
-
)
|
| 183 |
-
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image
|
| 184 |
-
|
| 185 |
-
return image
|
| 186 |
-
|
| 187 |
-
def img2img(
|
| 188 |
-
self, image: Union[str, Image.Image, torch.Tensor]
|
| 189 |
-
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
|
| 190 |
-
"""
|
| 191 |
-
Performs img2img.
|
| 192 |
-
|
| 193 |
-
Parameters
|
| 194 |
-
----------
|
| 195 |
-
image : Union[str, Image.Image, torch.Tensor]
|
| 196 |
-
The image to generate from.
|
| 197 |
-
|
| 198 |
-
Returns
|
| 199 |
-
-------
|
| 200 |
-
Image.Image
|
| 201 |
-
The generated image.
|
| 202 |
-
"""
|
| 203 |
-
if isinstance(image, str) or isinstance(image, Image.Image):
|
| 204 |
-
image = self.preprocess_image(image)
|
| 205 |
-
|
| 206 |
-
image_tensor = self.stream(image)
|
| 207 |
-
return self.postprocess_image(image_tensor, output_type=self.output_type)
|
| 208 |
-
|
| 209 |
-
def preprocess_image(self, image: Union[str, Image.Image]) -> torch.Tensor:
|
| 210 |
-
"""
|
| 211 |
-
Preprocesses the image.
|
| 212 |
-
|
| 213 |
-
Parameters
|
| 214 |
-
----------
|
| 215 |
-
image : Union[str, Image.Image, torch.Tensor]
|
| 216 |
-
The image to preprocess.
|
| 217 |
-
|
| 218 |
-
Returns
|
| 219 |
-
-------
|
| 220 |
-
torch.Tensor
|
| 221 |
-
The preprocessed image.
|
| 222 |
-
"""
|
| 223 |
-
if isinstance(image, str):
|
| 224 |
-
image = Image.open(image).convert("RGB").resize((self.width, self.height))
|
| 225 |
-
if isinstance(image, Image.Image):
|
| 226 |
-
image = image.convert("RGB").resize((self.width, self.height))
|
| 227 |
-
|
| 228 |
-
return self.stream.image_processor.preprocess(
|
| 229 |
-
image, self.height, self.width
|
| 230 |
-
).to(device=self.device, dtype=self.dtype)
|
| 231 |
-
|
| 232 |
-
def postprocess_image(
|
| 233 |
-
self, image_tensor: torch.Tensor, output_type: str = "pil"
|
| 234 |
-
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
|
| 235 |
-
"""
|
| 236 |
-
Postprocesses the image.
|
| 237 |
-
|
| 238 |
-
Parameters
|
| 239 |
-
----------
|
| 240 |
-
image_tensor : torch.Tensor
|
| 241 |
-
The image tensor to postprocess.
|
| 242 |
-
|
| 243 |
-
Returns
|
| 244 |
-
-------
|
| 245 |
-
Union[Image.Image, List[Image.Image]]
|
| 246 |
-
The postprocessed image.
|
| 247 |
-
"""
|
| 248 |
-
if self.frame_buffer_size > 1:
|
| 249 |
-
return postprocess_image(image_tensor.cpu(), output_type=output_type)
|
| 250 |
-
else:
|
| 251 |
-
return postprocess_image(image_tensor.cpu(), output_type=output_type)[0]
|
| 252 |
-
|
| 253 |
-
def _load_model(
|
| 254 |
-
self,
|
| 255 |
-
model_id: str,
|
| 256 |
-
t_index_list: List[int],
|
| 257 |
-
lcm_lora_id: Optional[str] = None,
|
| 258 |
-
vae_id: Optional[str] = None,
|
| 259 |
-
acceleration: Literal["none", "sfast", "tensorrt"] = "tensorrt",
|
| 260 |
-
is_drawing: bool = True,
|
| 261 |
-
warmup: int = 10,
|
| 262 |
-
use_lcm_lora: bool = True,
|
| 263 |
-
use_tiny_vae: bool = True,
|
| 264 |
-
cfg_type: Literal["none", "full", "self", "initialize"] = "self",
|
| 265 |
-
):
|
| 266 |
-
"""
|
| 267 |
-
Loads the model.
|
| 268 |
-
|
| 269 |
-
This method does the following:
|
| 270 |
-
|
| 271 |
-
1. Loads the model from the model_id.
|
| 272 |
-
2. Loads and fuses the LCM-LoRA model from the lcm_lora_id if needed.
|
| 273 |
-
3. Loads the VAE model from the vae_id if needed.
|
| 274 |
-
4. Enables acceleration if needed.
|
| 275 |
-
5. Prepares the model for inference.
|
| 276 |
-
6. Warms up the model.
|
| 277 |
-
|
| 278 |
-
Parameters
|
| 279 |
-
----------
|
| 280 |
-
model_id : str
|
| 281 |
-
The model id to load.
|
| 282 |
-
t_index_list : List[int]
|
| 283 |
-
The t_index_list to use for inference.
|
| 284 |
-
lcm_lora_id : Optional[str], optional
|
| 285 |
-
The lcm_lora_id to load, by default None.
|
| 286 |
-
vae_id : Optional[str], optional
|
| 287 |
-
The vae_id to load, by default None.
|
| 288 |
-
acceleration : Literal["none", "xfomers", "sfast", "tensorrt"], optional
|
| 289 |
-
The acceleration method to use, by default "tensorrt".
|
| 290 |
-
warmup : int, optional
|
| 291 |
-
The number of warmup steps to perform, by default 10.
|
| 292 |
-
is_drawing : bool, optional
|
| 293 |
-
Whether to draw the image or not, by default True.
|
| 294 |
-
use_lcm_lora : bool, optional
|
| 295 |
-
Whether to use LCM-LoRA or not, by default True.
|
| 296 |
-
use_tiny_vae : bool, optional
|
| 297 |
-
Whether to use TinyVAE or not, by default True.
|
| 298 |
-
cfg_type : Literal["none", "full", "self", "initialize"], optional
|
| 299 |
-
The cfg_type to use, by default "self".
|
| 300 |
-
"""
|
| 301 |
-
|
| 302 |
-
try: # Load from local directory
|
| 303 |
-
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
|
| 304 |
-
model_id,
|
| 305 |
-
).to(device=self.device, dtype=self.dtype)
|
| 306 |
-
|
| 307 |
-
except ValueError: # Load from huggingface
|
| 308 |
-
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_single_file(
|
| 309 |
-
model_id
|
| 310 |
-
).to(device=self.device, dtype=self.dtype)
|
| 311 |
-
except Exception: # No model found
|
| 312 |
-
traceback.print_exc()
|
| 313 |
-
print("Model load has failed. Doesn't exist.")
|
| 314 |
-
exit()
|
| 315 |
-
|
| 316 |
-
if self.use_safety_checker:
|
| 317 |
-
from transformers import CLIPFeatureExtractor
|
| 318 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
| 319 |
-
StableDiffusionSafetyChecker,
|
| 320 |
-
)
|
| 321 |
-
|
| 322 |
-
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
| 323 |
-
"CompVis/stable-diffusion-safety-checker"
|
| 324 |
-
).to(pipe.device)
|
| 325 |
-
self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
| 326 |
-
"openai/clip-vit-base-patch32"
|
| 327 |
-
)
|
| 328 |
-
self.nsfw_fallback_img = Image.new("RGB", (512, 512), (0, 0, 0))
|
| 329 |
-
|
| 330 |
-
stream = StreamDiffusion(
|
| 331 |
-
pipe=pipe,
|
| 332 |
-
t_index_list=t_index_list,
|
| 333 |
-
torch_dtype=self.dtype,
|
| 334 |
-
width=self.width,
|
| 335 |
-
height=self.height,
|
| 336 |
-
is_drawing=is_drawing,
|
| 337 |
-
frame_buffer_size=self.frame_buffer_size,
|
| 338 |
-
use_denoising_batch=self.use_denoising_batch,
|
| 339 |
-
cfg_type=cfg_type,
|
| 340 |
-
)
|
| 341 |
-
if not self.sd_turbo:
|
| 342 |
-
if use_lcm_lora:
|
| 343 |
-
if lcm_lora_id is not None:
|
| 344 |
-
stream.load_lcm_lora(
|
| 345 |
-
pretrained_model_name_or_path_or_dict=lcm_lora_id
|
| 346 |
-
)
|
| 347 |
-
else:
|
| 348 |
-
stream.load_lcm_lora()
|
| 349 |
-
stream.fuse_lora()
|
| 350 |
-
|
| 351 |
-
if use_tiny_vae:
|
| 352 |
-
if vae_id is not None:
|
| 353 |
-
stream.vae = AutoencoderTiny.from_pretrained(vae_id).to(
|
| 354 |
-
device=pipe.device, dtype=pipe.dtype
|
| 355 |
-
)
|
| 356 |
-
else:
|
| 357 |
-
stream.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd").to(
|
| 358 |
-
device=pipe.device, dtype=pipe.dtype
|
| 359 |
-
)
|
| 360 |
-
|
| 361 |
-
try:
|
| 362 |
-
if acceleration == "xformers":
|
| 363 |
-
stream.pipe.enable_xformers_memory_efficient_attention()
|
| 364 |
-
if acceleration == "tensorrt":
|
| 365 |
-
from streamdiffusion.acceleration.tensorrt import (
|
| 366 |
-
TorchVAEEncoder,
|
| 367 |
-
compile_unet,
|
| 368 |
-
compile_vae_decoder,
|
| 369 |
-
compile_vae_encoder,
|
| 370 |
-
)
|
| 371 |
-
from streamdiffusion.acceleration.tensorrt.engine import (
|
| 372 |
-
AutoencoderKLEngine,
|
| 373 |
-
UNet2DConditionModelEngine,
|
| 374 |
-
)
|
| 375 |
-
from streamdiffusion.acceleration.tensorrt.models import (
|
| 376 |
-
VAE,
|
| 377 |
-
UNet,
|
| 378 |
-
VAEEncoder,
|
| 379 |
-
)
|
| 380 |
-
|
| 381 |
-
def create_prefix(
|
| 382 |
-
max_batch_size: int,
|
| 383 |
-
min_batch_size: int,
|
| 384 |
-
):
|
| 385 |
-
return f"{model_id}--lcm_lora-{use_tiny_vae}--tiny_vae-{use_lcm_lora}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--mode-{self.mode}"
|
| 386 |
-
|
| 387 |
-
engine_dir = os.path.join("engines")
|
| 388 |
-
unet_path = os.path.join(
|
| 389 |
-
engine_dir,
|
| 390 |
-
create_prefix(
|
| 391 |
-
stream.trt_unet_batch_size, stream.trt_unet_batch_size
|
| 392 |
-
),
|
| 393 |
-
"unet.engine",
|
| 394 |
-
)
|
| 395 |
-
vae_encoder_path = os.path.join(
|
| 396 |
-
engine_dir,
|
| 397 |
-
create_prefix(
|
| 398 |
-
self.batch_size
|
| 399 |
-
if self.mode == "txt2img"
|
| 400 |
-
else stream.frame_bff_size,
|
| 401 |
-
self.batch_size
|
| 402 |
-
if self.mode == "txt2img"
|
| 403 |
-
else stream.frame_bff_size,
|
| 404 |
-
),
|
| 405 |
-
"vae_encoder.engine",
|
| 406 |
-
)
|
| 407 |
-
vae_decoder_path = os.path.join(
|
| 408 |
-
engine_dir,
|
| 409 |
-
create_prefix(
|
| 410 |
-
self.batch_size
|
| 411 |
-
if self.mode == "txt2img"
|
| 412 |
-
else stream.frame_bff_size,
|
| 413 |
-
self.batch_size
|
| 414 |
-
if self.mode == "txt2img"
|
| 415 |
-
else stream.frame_bff_size,
|
| 416 |
-
),
|
| 417 |
-
"vae_decoder.engine",
|
| 418 |
-
)
|
| 419 |
-
|
| 420 |
-
if not os.path.exists(unet_path):
|
| 421 |
-
os.makedirs(os.path.dirname(unet_path), exist_ok=True)
|
| 422 |
-
unet_model = UNet(
|
| 423 |
-
fp16=True,
|
| 424 |
-
device=stream.device,
|
| 425 |
-
max_batch_size=stream.trt_unet_batch_size,
|
| 426 |
-
min_batch_size=stream.trt_unet_batch_size,
|
| 427 |
-
embedding_dim=stream.text_encoder.config.hidden_size,
|
| 428 |
-
unet_dim=stream.unet.config.in_channels,
|
| 429 |
-
)
|
| 430 |
-
compile_unet(
|
| 431 |
-
stream.unet,
|
| 432 |
-
unet_model,
|
| 433 |
-
unet_path + ".onnx",
|
| 434 |
-
unet_path + ".opt.onnx",
|
| 435 |
-
unet_path,
|
| 436 |
-
opt_batch_size=stream.trt_unet_batch_size,
|
| 437 |
-
)
|
| 438 |
-
|
| 439 |
-
if not os.path.exists(vae_decoder_path):
|
| 440 |
-
os.makedirs(os.path.dirname(vae_decoder_path), exist_ok=True)
|
| 441 |
-
stream.vae.forward = stream.vae.decode
|
| 442 |
-
vae_decoder_model = VAE(
|
| 443 |
-
device=stream.device,
|
| 444 |
-
max_batch_size=self.batch_size
|
| 445 |
-
if self.mode == "txt2img"
|
| 446 |
-
else stream.frame_bff_size,
|
| 447 |
-
min_batch_size=self.batch_size
|
| 448 |
-
if self.mode == "txt2img"
|
| 449 |
-
else stream.frame_bff_size,
|
| 450 |
-
)
|
| 451 |
-
compile_vae_decoder(
|
| 452 |
-
stream.vae,
|
| 453 |
-
vae_decoder_model,
|
| 454 |
-
vae_decoder_path + ".onnx",
|
| 455 |
-
vae_decoder_path + ".opt.onnx",
|
| 456 |
-
vae_decoder_path,
|
| 457 |
-
opt_batch_size=self.batch_size
|
| 458 |
-
if self.mode == "txt2img"
|
| 459 |
-
else stream.frame_bff_size,
|
| 460 |
-
)
|
| 461 |
-
delattr(stream.vae, "forward")
|
| 462 |
-
|
| 463 |
-
if not os.path.exists(vae_encoder_path):
|
| 464 |
-
os.makedirs(os.path.dirname(vae_encoder_path), exist_ok=True)
|
| 465 |
-
vae_encoder = TorchVAEEncoder(stream.vae).to(torch.device("cuda"))
|
| 466 |
-
vae_encoder_model = VAEEncoder(
|
| 467 |
-
device=stream.device,
|
| 468 |
-
max_batch_size=self.batch_size
|
| 469 |
-
if self.mode == "txt2img"
|
| 470 |
-
else stream.frame_bff_size,
|
| 471 |
-
min_batch_size=self.batch_size
|
| 472 |
-
if self.mode == "txt2img"
|
| 473 |
-
else stream.frame_bff_size,
|
| 474 |
-
)
|
| 475 |
-
compile_vae_encoder(
|
| 476 |
-
vae_encoder,
|
| 477 |
-
vae_encoder_model,
|
| 478 |
-
vae_encoder_path + ".onnx",
|
| 479 |
-
vae_encoder_path + ".opt.onnx",
|
| 480 |
-
vae_encoder_path,
|
| 481 |
-
opt_batch_size=self.batch_size
|
| 482 |
-
if self.mode == "txt2img"
|
| 483 |
-
else stream.frame_bff_size,
|
| 484 |
-
)
|
| 485 |
-
|
| 486 |
-
cuda_steram = cuda.Stream()
|
| 487 |
-
|
| 488 |
-
vae_config = stream.vae.config
|
| 489 |
-
vae_dtype = stream.vae.dtype
|
| 490 |
-
|
| 491 |
-
stream.unet = UNet2DConditionModelEngine(
|
| 492 |
-
unet_path, cuda_steram, use_cuda_graph=False
|
| 493 |
-
)
|
| 494 |
-
stream.vae = AutoencoderKLEngine(
|
| 495 |
-
vae_encoder_path,
|
| 496 |
-
vae_decoder_path,
|
| 497 |
-
cuda_steram,
|
| 498 |
-
stream.pipe.vae_scale_factor,
|
| 499 |
-
use_cuda_graph=False,
|
| 500 |
-
)
|
| 501 |
-
setattr(stream.vae, "config", vae_config)
|
| 502 |
-
setattr(stream.vae, "dtype", vae_dtype)
|
| 503 |
-
|
| 504 |
-
gc.collect()
|
| 505 |
-
torch.cuda.empty_cache()
|
| 506 |
-
|
| 507 |
-
print("TensorRT acceleration enabled.")
|
| 508 |
-
if acceleration == "sfast":
|
| 509 |
-
from streamdiffusion.acceleration.sfast import (
|
| 510 |
-
accelerate_with_stable_fast,
|
| 511 |
-
)
|
| 512 |
-
|
| 513 |
-
stream = accelerate_with_stable_fast(stream)
|
| 514 |
-
print("StableFast acceleration enabled.")
|
| 515 |
-
except Exception:
|
| 516 |
-
traceback.print_exc()
|
| 517 |
-
print("Acceleration has failed. Falling back to normal mode.")
|
| 518 |
-
|
| 519 |
-
stream.prepare(
|
| 520 |
-
"",
|
| 521 |
-
"",
|
| 522 |
-
num_inference_steps=50,
|
| 523 |
-
guidance_scale=1.1
|
| 524 |
-
if stream.cfg_type in ["full", "self", "initialize"]
|
| 525 |
-
else 1.0,
|
| 526 |
-
generator=torch.manual_seed(2),
|
| 527 |
-
)
|
| 528 |
-
|
| 529 |
-
return stream
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|