Spaces:
Runtime error
Runtime error
File size: 4,818 Bytes
7dc6a72 b788820 7dc6a72 8eae2b8 7dc6a72 b788820 8eae2b8 b788820 8eae2b8 b788820 8eae2b8 7dc6a72 8eae2b8 7dc6a72 8eae2b8 7dc6a72 8eae2b8 7dc6a72 8eae2b8 7dc6a72 8eae2b8 7dc6a72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import io
import os
from typing import List
import PIL.Image
import requests
import torch
from diffusers import AutoencoderTiny, StableDiffusionPipeline
from streamdiffusion import StreamDiffusion
from streamdiffusion.image_utils import postprocess_image
def download_image(url: str):
response = requests.get(url)
image = PIL.Image.open(io.BytesIO(response.content))
return image
class StreamDiffusionWrapper:
def __init__(
self,
model_id: str,
lcm_lora_id: str,
vae_id: str,
device: str,
dtype: str,
t_index_list: List[int],
warmup: int,
safety_checker: bool,
):
self.device = device
self.dtype = dtype
self.prompt = ""
self.batch_size = len(t_index_list)
self.stream = self._load_model(
model_id=model_id,
lcm_lora_id=lcm_lora_id,
vae_id=vae_id,
t_index_list=t_index_list,
warmup=warmup,
)
self.safety_checker = None
if safety_checker:
from transformers import CLIPFeatureExtractor
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
).to(self.device)
self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
"openai/clip-vit-base-patch32"
)
self.nsfw_fallback_img = PIL.Image.new("RGB", (512, 512), (0, 0, 0))
self.stream.prepare("")
def _load_model(
self,
model_id: str,
lcm_lora_id: str,
vae_id: str,
t_index_list: List[int],
warmup: int,
):
if os.path.exists(model_id):
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_single_file(
model_id
).to(device=self.device, dtype=self.dtype)
else:
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
model_id
).to(device=self.device, dtype=self.dtype)
stream = StreamDiffusion(
pipe=pipe,
t_index_list=t_index_list,
torch_dtype=self.dtype,
is_drawing=True,
)
stream.load_lcm_lora(lcm_lora_id)
stream.fuse_lora()
stream.vae = AutoencoderTiny.from_pretrained(vae_id).to(
device=pipe.device, dtype=pipe.dtype
)
try:
from streamdiffusion.acceleration.tensorrt import accelerate_with_tensorrt
stream = accelerate_with_tensorrt(
stream,
"engines",
max_batch_size=self.batch_size,
engine_build_options={"build_static_batch": False},
)
print("TensorRT acceleration enabled.")
except Exception:
print("TensorRT acceleration has failed. Trying to use Stable Fast.")
try:
from streamdiffusion.acceleration.sfast import (
accelerate_with_stable_fast,
)
stream = accelerate_with_stable_fast(stream)
print("StableFast acceleration enabled.")
except Exception:
print("StableFast acceleration has failed. Using normal mode.")
pass
stream.prepare(
"",
num_inference_steps=50,
generator=torch.manual_seed(2),
)
# warmup
for _ in range(warmup):
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
stream.txt2img()
end.record()
torch.cuda.synchronize()
return stream
def __call__(self, prompt: str) -> PIL.Image.Image:
if self.prompt != prompt:
self.stream.update_prompt(prompt)
self.prompt = prompt
for i in range(self.batch_size):
x_output = self.stream.txt2img()
x_output = self.stream.txt2img()
image = postprocess_image(x_output, output_type="pil")[0]
if self.safety_checker:
safety_checker_input = self.feature_extractor(
image, return_tensors="pt"
).to(self.device)
_, has_nsfw_concept = self.safety_checker(
images=x_output,
clip_input=safety_checker_input.pixel_values.to(self.dtype),
)
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image
return image
if __name__ == "__main__":
wrapper = StreamDiffusionWrapper(10, 10)
wrapper()
|