Spaces:
Runtime error
Runtime error
Upload 21 files
Browse files- server/.DS_Store +0 -0
- server/config.py +0 -7
- server/main.py +2 -57
- server/requirements.txt +2 -1
- server/wrapper.py +63 -44
- view/.DS_Store +0 -0
- view/src/App.tsx +92 -27
server/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
server/config.py
CHANGED
@@ -21,18 +21,11 @@ class Config:
|
|
21 |
port: int = 9090
|
22 |
workers: int = 1
|
23 |
|
24 |
-
####################################################################
|
25 |
-
# Generation configuration
|
26 |
-
####################################################################
|
27 |
-
# The threshold for the Levenstein distance.
|
28 |
-
levenstein_distance_threshold: int = 3
|
29 |
-
|
30 |
####################################################################
|
31 |
# Model configuration
|
32 |
####################################################################
|
33 |
# SD1.x variant model
|
34 |
model_id: str = "SimianLuo/LCM_Dreamshaper_v7"
|
35 |
-
|
36 |
# LCM-LORA model
|
37 |
lcm_lora_id: str = "latent-consistency/lcm-lora-sdv1-5"
|
38 |
# TinyVAE model
|
|
|
21 |
port: int = 9090
|
22 |
workers: int = 1
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
####################################################################
|
25 |
# Model configuration
|
26 |
####################################################################
|
27 |
# SD1.x variant model
|
28 |
model_id: str = "SimianLuo/LCM_Dreamshaper_v7"
|
|
|
29 |
# LCM-LORA model
|
30 |
lcm_lora_id: str = "latent-consistency/lcm-lora-sdv1-5"
|
31 |
# TinyVAE model
|
server/main.py
CHANGED
@@ -32,7 +32,7 @@ class PredictResponseModel(BaseModel):
|
|
32 |
The response model for the /predict endpoint.
|
33 |
"""
|
34 |
|
35 |
-
|
36 |
|
37 |
|
38 |
class UpdatePromptResponseModel(BaseModel):
|
@@ -86,7 +86,6 @@ class Api:
|
|
86 |
self._update_prompt_lock = asyncio.Lock()
|
87 |
|
88 |
self.last_prompt: str = ""
|
89 |
-
self.last_images: list[str] = [""]
|
90 |
|
91 |
async def _predict(self, inp: PredictInputModel) -> PredictResponseModel:
|
92 |
"""
|
@@ -103,15 +102,7 @@ class Api:
|
|
103 |
The prediction result.
|
104 |
"""
|
105 |
async with self._predict_lock:
|
106 |
-
|
107 |
-
self._calc_levenstein_distance(inp.prompt, self.last_prompt)
|
108 |
-
< self.config.levenstein_distance_threshold
|
109 |
-
):
|
110 |
-
logger.info("Using cached images")
|
111 |
-
return PredictResponseModel(base64_images=self.last_images)
|
112 |
-
self.last_prompt = inp.prompt
|
113 |
-
self.last_images = [self._pil_to_base64(image) for image in self.stream_diffusion(inp.prompt)]
|
114 |
-
return PredictResponseModel(base64_images=self.last_images)
|
115 |
|
116 |
def _pil_to_base64(self, image: Image.Image, format: str = "JPEG") -> bytes:
|
117 |
"""
|
@@ -152,52 +143,6 @@ class Api:
|
|
152 |
base64_image = base64_image.split("base64,")[1]
|
153 |
return Image.open(BytesIO(base64.b64decode(base64_image))).convert("RGB")
|
154 |
|
155 |
-
def _calc_levenstein_distance(self, a: str, b: str) -> int:
|
156 |
-
"""
|
157 |
-
Calculate the Levenstein distance between two strings.
|
158 |
-
|
159 |
-
Parameters
|
160 |
-
----------
|
161 |
-
a : str
|
162 |
-
The first string.
|
163 |
-
|
164 |
-
b : str
|
165 |
-
The second string.
|
166 |
-
|
167 |
-
Returns
|
168 |
-
-------
|
169 |
-
int
|
170 |
-
The Levenstein distance.
|
171 |
-
"""
|
172 |
-
if a == b:
|
173 |
-
return 0
|
174 |
-
a_k = len(a)
|
175 |
-
b_k = len(b)
|
176 |
-
if a == "":
|
177 |
-
return b_k
|
178 |
-
if b == "":
|
179 |
-
return a_k
|
180 |
-
matrix = [[] for i in range(a_k + 1)]
|
181 |
-
for i in range(a_k + 1):
|
182 |
-
matrix[i] = [0 for j in range(b_k + 1)]
|
183 |
-
for i in range(a_k + 1):
|
184 |
-
matrix[i][0] = i
|
185 |
-
for j in range(b_k + 1):
|
186 |
-
matrix[0][j] = j
|
187 |
-
for i in range(1, a_k + 1):
|
188 |
-
ac = a[i - 1]
|
189 |
-
for j in range(1, b_k + 1):
|
190 |
-
bc = b[j - 1]
|
191 |
-
cost = 0 if (ac == bc) else 1
|
192 |
-
matrix[i][j] = min(
|
193 |
-
[
|
194 |
-
matrix[i - 1][j] + 1,
|
195 |
-
matrix[i][j - 1] + 1,
|
196 |
-
matrix[i - 1][j - 1] + cost,
|
197 |
-
]
|
198 |
-
)
|
199 |
-
return matrix[a_k][b_k]
|
200 |
-
|
201 |
|
202 |
if __name__ == "__main__":
|
203 |
from config import Config
|
|
|
32 |
The response model for the /predict endpoint.
|
33 |
"""
|
34 |
|
35 |
+
base64_image: str
|
36 |
|
37 |
|
38 |
class UpdatePromptResponseModel(BaseModel):
|
|
|
86 |
self._update_prompt_lock = asyncio.Lock()
|
87 |
|
88 |
self.last_prompt: str = ""
|
|
|
89 |
|
90 |
async def _predict(self, inp: PredictInputModel) -> PredictResponseModel:
|
91 |
"""
|
|
|
102 |
The prediction result.
|
103 |
"""
|
104 |
async with self._predict_lock:
|
105 |
+
return PredictResponseModel(base64_image=self._pil_to_base64(self.stream_diffusion(inp.prompt)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
def _pil_to_base64(self, image: Image.Image, format: str = "JPEG") -> bytes:
|
108 |
"""
|
|
|
143 |
base64_image = base64_image.split("base64,")[1]
|
144 |
return Image.open(BytesIO(base64.b64decode(base64_image))).convert("RGB")
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
if __name__ == "__main__":
|
148 |
from config import Config
|
server/requirements.txt
CHANGED
@@ -9,4 +9,5 @@ torchvision
|
|
9 |
torchaudio
|
10 |
triton
|
11 |
# https://github.com/chengzeyi/stable-fast --index-url https://download.pytorch.org/whl/cu121
|
12 |
-
https://github.com/chengzeyi/stable-fast/releases/download/v0.0.14/stable_fast-0.0.14+torch210cu121-cp310-cp310-manylinux2014_x86_64.whl
|
|
|
|
9 |
torchaudio
|
10 |
triton
|
11 |
# https://github.com/chengzeyi/stable-fast --index-url https://download.pytorch.org/whl/cu121
|
12 |
+
# https://github.com/chengzeyi/stable-fast/releases/download/v0.0.14/stable_fast-0.0.14+torch210cu121-cp310-cp310-manylinux2014_x86_64.whl
|
13 |
+
https://github.com/chengzeyi/stable-fast/releases/download/v0.0.15.post1/stable_fast-0.0.15.post1+torch211cu121-cp310-cp310-manylinux2014_x86_64.whl
|
server/wrapper.py
CHANGED
@@ -8,7 +8,6 @@ import torch
|
|
8 |
from diffusers import AutoencoderTiny, StableDiffusionPipeline
|
9 |
|
10 |
from streamdiffusion import StreamDiffusion
|
11 |
-
from streamdiffusion.acceleration.sfast import accelerate_with_stable_fast
|
12 |
from streamdiffusion.image_utils import postprocess_image
|
13 |
|
14 |
|
@@ -33,6 +32,7 @@ class StreamDiffusionWrapper:
|
|
33 |
self.device = device
|
34 |
self.dtype = dtype
|
35 |
self.prompt = ""
|
|
|
36 |
|
37 |
self.stream = self._load_model(
|
38 |
model_id=model_id,
|
@@ -44,13 +44,18 @@ class StreamDiffusionWrapper:
|
|
44 |
self.safety_checker = None
|
45 |
if safety_checker:
|
46 |
from transformers import CLIPFeatureExtractor
|
47 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import
|
|
|
|
|
|
|
48 |
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
49 |
-
"CompVis/stable-diffusion-safety-checker"
|
|
|
50 |
self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
51 |
-
"openai/clip-vit-base-patch32"
|
52 |
-
|
53 |
-
|
|
|
54 |
|
55 |
def _load_model(
|
56 |
self,
|
@@ -61,13 +66,13 @@ class StreamDiffusionWrapper:
|
|
61 |
warmup: int,
|
62 |
):
|
63 |
if os.path.exists(model_id):
|
64 |
-
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_single_file(
|
65 |
-
|
66 |
-
)
|
67 |
else:
|
68 |
-
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
|
69 |
-
|
70 |
-
)
|
71 |
|
72 |
stream = StreamDiffusion(
|
73 |
pipe=pipe,
|
@@ -77,8 +82,32 @@ class StreamDiffusionWrapper:
|
|
77 |
)
|
78 |
stream.load_lcm_lora(lcm_lora_id)
|
79 |
stream.fuse_lora()
|
80 |
-
stream.vae = AutoencoderTiny.from_pretrained(vae_id).to(
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
stream.prepare(
|
84 |
"",
|
@@ -99,37 +128,27 @@ class StreamDiffusionWrapper:
|
|
99 |
|
100 |
return stream
|
101 |
|
102 |
-
def __call__(self, prompt: str) ->
|
103 |
-
self.
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
image, return_tensors="pt").to(self.device)
|
122 |
-
_, has_nsfw_concept = self.safety_checker(
|
123 |
-
images=x_output, clip_input=safety_checker_input.pixel_values.to(
|
124 |
-
self.dtype)
|
125 |
-
)
|
126 |
-
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image
|
127 |
-
images.append(image)
|
128 |
-
end.record()
|
129 |
-
|
130 |
-
torch.cuda.synchronize()
|
131 |
|
132 |
-
return
|
133 |
|
134 |
|
135 |
if __name__ == "__main__":
|
|
|
8 |
from diffusers import AutoencoderTiny, StableDiffusionPipeline
|
9 |
|
10 |
from streamdiffusion import StreamDiffusion
|
|
|
11 |
from streamdiffusion.image_utils import postprocess_image
|
12 |
|
13 |
|
|
|
32 |
self.device = device
|
33 |
self.dtype = dtype
|
34 |
self.prompt = ""
|
35 |
+
self.batch_size = len(t_index_list)
|
36 |
|
37 |
self.stream = self._load_model(
|
38 |
model_id=model_id,
|
|
|
44 |
self.safety_checker = None
|
45 |
if safety_checker:
|
46 |
from transformers import CLIPFeatureExtractor
|
47 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
48 |
+
StableDiffusionSafetyChecker,
|
49 |
+
)
|
50 |
+
|
51 |
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
52 |
+
"CompVis/stable-diffusion-safety-checker"
|
53 |
+
).to(self.device)
|
54 |
self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
55 |
+
"openai/clip-vit-base-patch32"
|
56 |
+
)
|
57 |
+
self.nsfw_fallback_img = PIL.Image.new("RGB", (512, 512), (0, 0, 0))
|
58 |
+
self.stream.prepare("")
|
59 |
|
60 |
def _load_model(
|
61 |
self,
|
|
|
66 |
warmup: int,
|
67 |
):
|
68 |
if os.path.exists(model_id):
|
69 |
+
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_single_file(
|
70 |
+
model_id
|
71 |
+
).to(device=self.device, dtype=self.dtype)
|
72 |
else:
|
73 |
+
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
|
74 |
+
model_id
|
75 |
+
).to(device=self.device, dtype=self.dtype)
|
76 |
|
77 |
stream = StreamDiffusion(
|
78 |
pipe=pipe,
|
|
|
82 |
)
|
83 |
stream.load_lcm_lora(lcm_lora_id)
|
84 |
stream.fuse_lora()
|
85 |
+
stream.vae = AutoencoderTiny.from_pretrained(vae_id).to(
|
86 |
+
device=pipe.device, dtype=pipe.dtype
|
87 |
+
)
|
88 |
+
|
89 |
+
try:
|
90 |
+
from streamdiffusion.acceleration.tensorrt import accelerate_with_tensorrt
|
91 |
+
|
92 |
+
stream = accelerate_with_tensorrt(
|
93 |
+
stream,
|
94 |
+
"engines",
|
95 |
+
max_batch_size=self.batch_size,
|
96 |
+
engine_build_options={"build_static_batch": False},
|
97 |
+
)
|
98 |
+
print("TensorRT acceleration enabled.")
|
99 |
+
except Exception:
|
100 |
+
print("TensorRT acceleration has failed. Trying to use Stable Fast.")
|
101 |
+
try:
|
102 |
+
from streamdiffusion.acceleration.sfast import (
|
103 |
+
accelerate_with_stable_fast,
|
104 |
+
)
|
105 |
+
|
106 |
+
stream = accelerate_with_stable_fast(stream)
|
107 |
+
print("StableFast acceleration enabled.")
|
108 |
+
except Exception:
|
109 |
+
print("StableFast acceleration has failed. Using normal mode.")
|
110 |
+
pass
|
111 |
|
112 |
stream.prepare(
|
113 |
"",
|
|
|
128 |
|
129 |
return stream
|
130 |
|
131 |
+
def __call__(self, prompt: str) -> PIL.Image.Image:
|
132 |
+
if self.prompt != prompt:
|
133 |
+
self.stream.update_prompt(prompt)
|
134 |
+
self.prompt = prompt
|
135 |
+
for i in range(self.batch_size):
|
136 |
+
x_output = self.stream.txt2img()
|
137 |
+
|
138 |
+
x_output = self.stream.txt2img()
|
139 |
+
image = postprocess_image(x_output, output_type="pil")[0]
|
140 |
+
|
141 |
+
if self.safety_checker:
|
142 |
+
safety_checker_input = self.feature_extractor(
|
143 |
+
image, return_tensors="pt"
|
144 |
+
).to(self.device)
|
145 |
+
_, has_nsfw_concept = self.safety_checker(
|
146 |
+
images=x_output,
|
147 |
+
clip_input=safety_checker_input.pixel_values.to(self.dtype),
|
148 |
+
)
|
149 |
+
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
return image
|
152 |
|
153 |
|
154 |
if __name__ == "__main__":
|
view/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
view/src/App.tsx
CHANGED
@@ -1,28 +1,75 @@
|
|
1 |
-
import React, { useCallback,
|
2 |
-
import { TextField, Grid
|
3 |
|
4 |
function App() {
|
5 |
const [inputPrompt, setInputPrompt] = useState("");
|
6 |
-
const [
|
|
|
7 |
|
8 |
-
const
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
console.error("Error fetching images:", error);
|
20 |
}
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
const handlePromptChange = (event: React.ChangeEvent<HTMLInputElement>) => {
|
24 |
setInputPrompt(event.target.value);
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
};
|
27 |
|
28 |
return (
|
@@ -48,20 +95,38 @@ function App() {
|
|
48 |
flexDirection: "column",
|
49 |
}}
|
50 |
>
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
<TextField
|
61 |
variant="outlined"
|
62 |
value={inputPrompt}
|
63 |
onChange={handlePromptChange}
|
64 |
-
style={{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
placeholder="Enter a prompt"
|
66 |
/>
|
67 |
</div>
|
|
|
1 |
+
import React, { useCallback, useState } from "react";
|
2 |
+
import { TextField, Grid } from "@mui/material";
|
3 |
|
4 |
function App() {
|
5 |
const [inputPrompt, setInputPrompt] = useState("");
|
6 |
+
const [lastPrompt, setLastPrompt] = useState("");
|
7 |
+
const [images, setImages] = useState(Array(16).fill("images/white.jpg"));
|
8 |
|
9 |
+
const calculateEditDistance = (a: string, b: string) => {
|
10 |
+
if (a.length === 0) return b.length;
|
11 |
+
if (b.length === 0) return a.length;
|
12 |
+
|
13 |
+
const matrix = [];
|
14 |
+
|
15 |
+
for (let i = 0; i <= b.length; i++) {
|
16 |
+
matrix[i] = [i];
|
17 |
+
}
|
18 |
+
for (let i = 0; i <= a.length; i++) {
|
19 |
+
matrix[0][i] = i;
|
|
|
20 |
}
|
21 |
+
|
22 |
+
for (let i = 1; i <= b.length; i++) {
|
23 |
+
for (let j = 1; j <= a.length; j++) {
|
24 |
+
if (b.charAt(i - 1) === a.charAt(j - 1)) {
|
25 |
+
matrix[i][j] = matrix[i - 1][j - 1];
|
26 |
+
} else {
|
27 |
+
matrix[i][j] = Math.min(
|
28 |
+
matrix[i - 1][j - 1] + 1,
|
29 |
+
Math.min(matrix[i][j - 1] + 1, matrix[i - 1][j] + 1)
|
30 |
+
);
|
31 |
+
}
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
return matrix[b.length][a.length];
|
36 |
+
};
|
37 |
+
|
38 |
+
const fetchImage = useCallback(
|
39 |
+
async (index: number) => {
|
40 |
+
try {
|
41 |
+
const response = await fetch("/api/predict", {
|
42 |
+
method: "POST",
|
43 |
+
headers: { "Content-Type": "application/json" },
|
44 |
+
body: JSON.stringify({ prompt: inputPrompt }),
|
45 |
+
});
|
46 |
+
const data = await response.json();
|
47 |
+
const imageUrl = `data:image/jpeg;base64,${data.base64_image}`;
|
48 |
+
|
49 |
+
setImages((prevImages) => {
|
50 |
+
const newImages = [...prevImages];
|
51 |
+
newImages[index] = imageUrl;
|
52 |
+
return newImages;
|
53 |
+
});
|
54 |
+
} catch (error) {
|
55 |
+
console.error("Error fetching image:", error);
|
56 |
+
}
|
57 |
+
},
|
58 |
+
[inputPrompt]
|
59 |
+
);
|
60 |
|
61 |
const handlePromptChange = (event: React.ChangeEvent<HTMLInputElement>) => {
|
62 |
setInputPrompt(event.target.value);
|
63 |
+
const newPrompt = event.target.value;
|
64 |
+
const editDistance = calculateEditDistance(lastPrompt, newPrompt);
|
65 |
+
|
66 |
+
if (editDistance >= 2) {
|
67 |
+
setInputPrompt(newPrompt);
|
68 |
+
setLastPrompt(newPrompt);
|
69 |
+
for (let i = 0; i < 16; i++) {
|
70 |
+
fetchImage(i);
|
71 |
+
}
|
72 |
+
}
|
73 |
};
|
74 |
|
75 |
return (
|
|
|
95 |
flexDirection: "column",
|
96 |
}}
|
97 |
>
|
98 |
+
<Grid
|
99 |
+
container
|
100 |
+
spacing={1}
|
101 |
+
style={{ maxWidth: "50%", maxHeight: "70%" }}
|
102 |
+
>
|
103 |
+
{images.map((image, index) => (
|
104 |
+
<Grid item xs={3} key={index}>
|
105 |
+
<img
|
106 |
+
src={image}
|
107 |
+
alt={`Generated ${index}`}
|
108 |
+
style={{
|
109 |
+
maxWidth: "100%",
|
110 |
+
maxHeight: "150px",
|
111 |
+
borderRadius: "10px",
|
112 |
+
}}
|
113 |
+
/>
|
114 |
+
</Grid>
|
115 |
+
))}
|
116 |
+
</Grid>
|
117 |
<TextField
|
118 |
variant="outlined"
|
119 |
value={inputPrompt}
|
120 |
onChange={handlePromptChange}
|
121 |
+
style={{
|
122 |
+
marginBottom: "20px",
|
123 |
+
marginTop: "20px",
|
124 |
+
width: "640px",
|
125 |
+
color: "#ffffff",
|
126 |
+
borderColor: "#ffffff",
|
127 |
+
borderRadius: "10px",
|
128 |
+
backgroundColor: "#ffffff",
|
129 |
+
}}
|
130 |
placeholder="Enter a prompt"
|
131 |
/>
|
132 |
</div>
|