CMT-Mapping / app.py
Severian's picture
Update app.py
b8daacb verified
raw
history blame
68.7 kB
import os
import warnings
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from umap import UMAP
from sklearn.cluster import KMeans
from scipy.stats import entropy as shannon_entropy
from scipy import special as sp_special
from scipy.interpolate import griddata
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cdist
import soundfile as sf
import gradio as gr
# ================================================================
# Unified Communication Manifold Explorer & CMT Visualizer v4.0
# - Adds side-by-side comparison capabilities from HTML draft
# - Implements cross-species neighbor finding for grammar mapping
# - Separates human and dog audio with automatic pairing
# - Enhanced dual visualization for comparative analysis
# ================================================================
# - Adds Interactive Holography tab for full field reconstruction.
# - Interpolates the continuous CMT state-space (Φ field).
# - Visualizes topology, vector flow, and phase interference.
# - Adds informational-entropy-geometry visualization.
# - Prioritizes specific Colab paths for data loading.
# ================================================================
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
print("Initializing the Interactive CMT Holography Explorer...")
# ---------------------------------------------------------------
# Data setup
# ---------------------------------------------------------------
# Paths for local execution (used for dummy data generation fallback)
BASE_DIR = os.path.abspath(os.getcwd())
DATA_DIR = os.path.join(BASE_DIR, "data")
DOG_DIR = os.path.join(DATA_DIR, "dog")
HUMAN_DIR = os.path.join(DATA_DIR, "human")
# Paths for different deployment environments
# Priority order: 1) Hugging Face Spaces (repo root), 2) Colab, 3) Local
HF_CSV_DOG = "cmt_dog_sound_analysis.csv"
HF_CSV_HUMAN = "cmt_human_speech_analysis.csv"
COLAB_CSV_DOG = "/content/cmt_dog_sound_analysis.csv"
COLAB_CSV_HUMAN = "/content/cmt_human_speech_analysis.csv"
# Determine which environment we're in and set paths accordingly
if os.path.exists(HF_CSV_DOG) and os.path.exists(HF_CSV_HUMAN):
# Hugging Face Spaces - files in repo root
CSV_DOG = HF_CSV_DOG
CSV_HUMAN = HF_CSV_HUMAN
print("Using Hugging Face Spaces paths")
elif os.path.exists(COLAB_CSV_DOG) and os.path.exists(COLAB_CSV_HUMAN):
# Google Colab environment
CSV_DOG = COLAB_CSV_DOG
CSV_HUMAN = COLAB_CSV_HUMAN
print("Using Google Colab paths")
else:
# Fallback to local or will trigger dummy data
CSV_DOG = HF_CSV_DOG # Try repo root first
CSV_HUMAN = HF_CSV_HUMAN
print("Falling back to local/dummy data paths")
# These are for creating dummy audio files if needed
os.makedirs(DOG_DIR, exist_ok=True)
os.makedirs(os.path.join(HUMAN_DIR, "Actor_01"), exist_ok=True)
# --- Audio Data Configuration (Platform-aware paths) ---
# For Hugging Face Spaces, audio files might be in the repo or need different handling
# For Colab, they're in Google Drive
if os.path.exists("/content/drive/MyDrive/combined"):
# Google Colab with mounted Drive
DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined'
HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human'
print("Using Google Drive audio paths")
elif os.path.exists("combined") and os.path.exists("human"):
# Hugging Face Spaces with audio in repo root
DOG_AUDIO_BASE_PATH = 'combined'
HUMAN_AUDIO_BASE_PATH = 'human'
print("Using Hugging Face Spaces audio paths (repo root)")
elif os.path.exists("audio/combined"):
# Alternative Hugging Face Spaces location
DOG_AUDIO_BASE_PATH = 'audio/combined'
HUMAN_AUDIO_BASE_PATH = 'audio/human'
print("Using Hugging Face Spaces audio paths (audio subdir)")
else:
# Fallback to local dummy paths
DOG_AUDIO_BASE_PATH = DOG_DIR
HUMAN_AUDIO_BASE_PATH = HUMAN_DIR
print("Using local dummy audio paths")
print(f"Audio base paths configured:")
print(f"- Dog audio base: {DOG_AUDIO_BASE_PATH}")
print(f"- Human audio base: {HUMAN_AUDIO_BASE_PATH}")
# ---------------------------------------------------------------
# Cross-Species Analysis Functions
# ---------------------------------------------------------------
def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5):
"""
Finds the closest neighbor from the opposite species using feature similarity.
This enables cross-species pattern mapping for grammar development.
"""
selected_source = selected_row['source']
opposite_source = 'Human' if selected_source == 'Dog' else 'Dog'
# Get feature columns for similarity calculation
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
if not feature_cols:
# Fallback to any numeric columns if no feature columns exist
numeric_cols = df_combined.select_dtypes(include=[np.number]).columns
feature_cols = [c for c in numeric_cols if c not in ['x', 'y', 'z', 'cluster']]
if not feature_cols:
# Random selection if no suitable features found
opposite_species_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_species_data) > 0:
return opposite_species_data.iloc[0]
return None
# Extract features for the selected row
selected_features = selected_row[feature_cols].values.reshape(1, -1)
selected_features = np.nan_to_num(selected_features)
# Get all rows from the opposite species
opposite_species_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_species_data) == 0:
return None
# Extract features for opposite species
opposite_features = opposite_species_data[feature_cols].values
opposite_features = np.nan_to_num(opposite_features)
# Calculate cosine similarity (better for high-dimensional feature spaces)
similarities = cosine_similarity(selected_features, opposite_features)[0]
# Find the index of the most similar neighbor
most_similar_idx = np.argmax(similarities)
nearest_neighbor = opposite_species_data.iloc[most_similar_idx]
return nearest_neighbor
# ---------------------------------------------------------------
# Load datasets (Colab-first paths)
# ---------------------------------------------------------------
# Debug: Show what files we're looking for and what exists
print(f"Looking for CSV files:")
print(f"- Dog CSV: {CSV_DOG} (exists: {os.path.exists(CSV_DOG)})")
print(f"- Human CSV: {CSV_HUMAN} (exists: {os.path.exists(CSV_HUMAN)})")
print(f"Current working directory: {os.getcwd()}")
print(f"Files in current directory: {os.listdir('.')}")
if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN):
print(f"✅ Found existing data files. Loading from:\n- {CSV_DOG}\n- {CSV_HUMAN}")
df_dog = pd.read_csv(CSV_DOG)
df_human = pd.read_csv(CSV_HUMAN)
print(f"Successfully loaded data: {len(df_dog)} dog rows, {len(df_human)} human rows")
else:
print("❌ Could not find one or both CSV files. Generating and using in-memory dummy data.")
# This section is for DUMMY DATA GENERATION ONLY.
# It runs if the primary CSVs are not found and does NOT write files.
n_dummy_items_per_category = 50
rng = np.random.default_rng(42)
# Ensure labels match the exact number of items
base_dog_labels = ["bark", "growl", "whine", "pant"]
base_human_labels = ["speech", "laugh", "cry", "shout"]
dog_labels = [base_dog_labels[i % len(base_dog_labels)] for i in range(n_dummy_items_per_category)]
human_labels = [base_human_labels[i % len(base_human_labels)] for i in range(n_dummy_items_per_category)]
dog_rows = {
"feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
"label": dog_labels, "filepath": [f"dog_{i}.wav" for i in range(n_dummy_items_per_category)],
"diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
"zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
}
human_rows = {
"feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
"label": human_labels, "filepath": [f"human_{i}.wav" for i in range(n_dummy_items_per_category)],
"diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
"zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
}
df_dog = pd.DataFrame(dog_rows)
df_human = pd.DataFrame(human_rows)
# We still create dummy audio files for the UI to use if needed
sr = 22050
dur = 2.0
t = np.linspace(0, dur, int(sr * dur), endpoint=False)
for i in range(n_dummy_items_per_category):
tone_freq = 220 + 20 * (i % 5)
audio = 0.1 * np.sin(2 * np.pi * tone_freq * t) + 0.02 * rng.standard_normal(t.shape)
audio = audio / (np.max(np.abs(audio)) + 1e-9)
dog_label = dog_labels[i]
dog_label_dir = os.path.join(DOG_DIR, dog_label)
os.makedirs(dog_label_dir, exist_ok=True)
sf.write(os.path.join(dog_label_dir, f"dog_{i}.wav"), audio, sr)
sf.write(os.path.join(HUMAN_DIR, "Actor_01", f"human_{i}.wav"), audio, sr)
print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows.")
df_dog["source"], df_human["source"] = "Dog", "Human"
df_combined = pd.concat([df_dog, df_human], ignore_index=True)
# ---------------------------------------------------------------
# Expanded CMT implementation
# ---------------------------------------------------------------
class ExpandedCMT:
def __init__(self):
self.c1, self.c2 = 0.587 + 1.223j, -0.994 + 0.0j
# A large but finite number to represent the pole at z=1 for Zeta
self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j
self.lens_library = {
"gamma": sp_special.gamma,
"zeta": self._regularized_zeta, # Use the robust zeta function
"airy": lambda z: sp_special.airy(z)[0],
"bessel": lambda z: sp_special.jv(0, z),
}
def _regularized_zeta(self, z: np.ndarray) -> np.ndarray:
"""
A wrapper around scipy's zeta function to handle the pole at z=1.
"""
# Create a copy to avoid modifying the original array
z_out = np.copy(z).astype(np.complex128)
# Find where the real part is close to 1 and the imaginary part is close to 0
pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0)
# Apply the standard zeta function to non-pole points
non_pole_points = ~pole_condition
z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1)
# Apply the regularization constant to the pole points
z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION
return z_out
def _robust_normalize(self, signal: np.ndarray) -> np.ndarray:
if signal.size == 0: return signal
Q1, Q3 = np.percentile(signal, [25, 75])
IQR = Q3 - Q1
if IQR < 1e-9:
median, mad = np.median(signal), np.median(np.abs(signal - np.median(signal)))
return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9)
lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
clipped = np.clip(signal, lower, upper)
s_min, s_max = np.min(clipped), np.max(clipped)
return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0
def _encode(self, signal: np.ndarray) -> np.ndarray:
N = len(signal)
if N == 0: return signal.astype(np.complex128)
i = np.arange(N)
theta = 2.0 * np.pi * i / N
f_k, A_k = np.array([271, 341, 491]), np.array([0.033, 0.050, 0.100])
phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0)
Theta = theta + phi
exp_iTheta = np.exp(1j * Theta)
g, m = signal * exp_iTheta, np.abs(signal) * exp_iTheta
return 0.5 * g + 0.5 * m
def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str):
lens_fn = self.lens_library.get(lens_type)
if not lens_fn: raise ValueError(f"Lens '{lens_type}' not found.")
with np.errstate(all="ignore"):
w = lens_fn(encoded_signal)
phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal)
finite_mask = np.isfinite(phi_trajectory)
return phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask], len(encoded_signal), len(phi_trajectory[finite_mask])
# ---------------------------------------------------------------
# Feature preparation and UMAP embedding
# ---------------------------------------------------------------
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
features = np.nan_to_num(df_combined[feature_cols].to_numpy())
reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42)
df_combined[["x", "y", "z"]] = reducer.fit_transform(features)
kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))), random_state=42, n_init=10)
df_combined["cluster"] = kmeans.fit_predict(features)
df_combined["chaos_score"] = np.log1p(df_combined.get("diag_srl_gamma", 0)) / (df_combined.get("diag_alpha_gamma", 1) + 1e-2)
# ---------------------------------------------------------------
# Core Visualization and Analysis Functions
# ---------------------------------------------------------------
# Cache for resolved audio paths and CMT data to avoid repeated computations
_audio_path_cache = {}
_cmt_data_cache = {}
# Advanced manifold analysis functions
def calculate_species_boundary(df_combined):
"""Calculate the geometric boundary between species using support vector machines."""
from sklearn.svm import SVC
# Prepare data for boundary calculation
human_data = df_combined[df_combined['source'] == 'Human'][['x', 'y', 'z']].values
dog_data = df_combined[df_combined['source'] == 'Dog'][['x', 'y', 'z']].values
# Create binary classification data
X = np.vstack([human_data, dog_data])
y = np.hstack([np.ones(len(human_data)), np.zeros(len(dog_data))])
# Fit SVM for boundary
svm = SVC(kernel='rbf', probability=True)
svm.fit(X, y)
# Create boundary surface
x_range = np.linspace(X[:, 0].min(), X[:, 0].max(), 20)
y_range = np.linspace(X[:, 1].min(), X[:, 1].max(), 20)
z_range = np.linspace(X[:, 2].min(), X[:, 2].max(), 20)
xx, yy = np.meshgrid(x_range, y_range)
boundary_points = []
for z_val in z_range:
grid_points = np.c_[xx.ravel(), yy.ravel(), np.full(xx.ravel().shape, z_val)]
probabilities = svm.predict_proba(grid_points)[:, 1]
# Find points near decision boundary (probability ~ 0.5)
boundary_mask = np.abs(probabilities - 0.5) < 0.05
if np.any(boundary_mask):
boundary_points.extend(grid_points[boundary_mask])
return np.array(boundary_points) if boundary_points else None
def create_enhanced_manifold_plot(df_filtered, lens_selected, color_scheme, point_size,
show_boundary, show_trajectories):
"""Create the main 3D manifold visualization with all advanced features."""
# Get CMT diagnostic values for the selected lens
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
# Determine color values based on scheme
if color_scheme == "Species":
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']]
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']] # Blue for Dog, Orange for Human
colorbar_title = "Species (Blue=Dog, Orange=Human)"
elif color_scheme == "Emotion":
unique_emotions = df_filtered['label'].unique()
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)}
color_values = [emotion_map[label] for label in df_filtered['label']]
colorscale = 'Viridis'
colorbar_title = "Emotional State"
elif color_scheme == "CMT_Alpha":
color_values = df_filtered[alpha_col].values
colorscale = 'Plasma'
colorbar_title = f"CMT Alpha ({lens_selected})"
elif color_scheme == "CMT_SRL":
color_values = df_filtered[srl_col].values
colorscale = 'Turbo'
colorbar_title = f"SRL Complexity ({lens_selected})"
else: # Cluster
color_values = df_filtered['cluster'].values
colorscale = 'Plotly3'
colorbar_title = "Cluster ID"
# Create hover text with rich information
hover_text = []
for _, row in df_filtered.iterrows():
hover_info = f"""
<b>{row['source']}</b>: {row['label']}<br>
File: {row['filepath']}<br>
<b>CMT Diagnostics ({lens_selected}):</b><br>
α: {row[alpha_col]:.4f}<br>
SRL: {row[srl_col]:.4f}<br>
Coordinates: ({row['x']:.3f}, {row['y']:.3f}, {row['z']:.3f})
"""
hover_text.append(hover_info)
# Create main scatter plot
fig = go.Figure()
# Add main data points
fig.add_trace(go.Scatter3d(
x=df_filtered['x'],
y=df_filtered['y'],
z=df_filtered['z'],
mode='markers',
marker=dict(
size=point_size,
color=color_values,
colorscale=colorscale,
showscale=True,
colorbar=dict(title=colorbar_title),
opacity=0.8,
line=dict(width=0.5, color='rgba(50,50,50,0.5)')
),
text=hover_text,
hovertemplate='%{text}<extra></extra>',
name='Communications'
))
# Add species boundary if requested
if show_boundary:
boundary_points = calculate_species_boundary(df_filtered)
if boundary_points is not None and len(boundary_points) > 0:
fig.add_trace(go.Scatter3d(
x=boundary_points[:, 0],
y=boundary_points[:, 1],
z=boundary_points[:, 2],
mode='markers',
marker=dict(
size=2,
color='red',
opacity=0.3
),
name='Species Boundary',
hovertemplate='Species Boundary<extra></extra>'
))
# Add trajectories if requested
if show_trajectories:
# Create colorful trajectories between similar emotional states
emotion_colors = {
'angry': '#FF4444',
'happy': '#44FF44',
'sad': '#4444FF',
'fearful': '#FF44FF',
'neutral': '#FFFF44',
'surprised': '#44FFFF',
'disgusted': '#FF8844',
'bark': '#FF6B35',
'growl': '#8B4513',
'whine': '#9370DB',
'pant': '#20B2AA',
'speech': '#1E90FF',
'laugh': '#FFD700',
'cry': '#4169E1',
'shout': '#DC143C'
}
for i, emotion in enumerate(df_filtered['label'].unique()):
emotion_data = df_filtered[df_filtered['label'] == emotion]
if len(emotion_data) > 1:
# Get color for this emotion, fallback to cycle through colors
base_colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7', '#DDA0DD', '#98D8C8', '#F7DC6F']
emotion_color = emotion_colors.get(emotion.lower(), base_colors[i % len(base_colors)])
# Create trajectories connecting points of same emotional state
x_coords = emotion_data['x'].values
y_coords = emotion_data['y'].values
z_coords = emotion_data['z'].values
# Sort by one dimension to create smoother trajectories
sort_indices = np.argsort(x_coords)
x_sorted = x_coords[sort_indices]
y_sorted = y_coords[sort_indices]
z_sorted = z_coords[sort_indices]
fig.add_trace(go.Scatter3d(
x=x_sorted,
y=y_sorted,
z=z_sorted,
mode='lines+markers',
line=dict(
width=4,
color=emotion_color,
dash='dash'
),
marker=dict(
size=3,
color=emotion_color,
opacity=0.8
),
name=f'{emotion.title()} Path',
showlegend=True,
hovertemplate=f'<b>{emotion.title()} Communication Path</b><br>' +
'X: %{x:.3f}<br>Y: %{y:.3f}<br>Z: %{z:.3f}<extra></extra>',
opacity=0.7
))
# Update layout
fig.update_layout(
title={
'text': "🌌 Universal Interspecies Communication Manifold<br><sub>First mathematical map of cross-species communication geometry</sub>",
'x': 0.5,
'xanchor': 'center'
},
scene=dict(
xaxis_title='Manifold Dimension 1',
yaxis_title='Manifold Dimension 2',
zaxis_title='Manifold Dimension 3',
camera=dict(
eye=dict(x=1.5, y=1.5, z=1.5)
),
bgcolor='rgba(0,0,0,0)',
aspectmode='cube'
),
margin=dict(l=0, r=0, b=0, t=60),
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def create_2d_projection_plot(df_filtered, color_scheme):
"""Create 2D projection for easier analysis."""
fig = go.Figure()
# Create color mapping
if color_scheme == "Species":
color_values = df_filtered['source']
color_map = {'Human': '#ff7f0e', 'Dog': '#1f77b4'}
else:
color_values = df_filtered['label']
unique_labels = df_filtered['label'].unique()
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b']
color_map = {label: colors[i % len(colors)] for i, label in enumerate(unique_labels)}
for value in color_values.unique():
data_subset = df_filtered[color_values == value]
fig.add_trace(go.Scatter(
x=data_subset['x'],
y=data_subset['y'],
mode='markers',
marker=dict(
size=8,
color=color_map.get(value, '#1f77b4'),
opacity=0.7
),
name=str(value),
text=[f"{row['source']}: {row['label']}" for _, row in data_subset.iterrows()],
hovertemplate='%{text}<br>X: %{x:.3f}<br>Y: %{y:.3f}<extra></extra>'
))
fig.update_layout(
title="2D Manifold Projection (X-Y Plane)",
xaxis_title="Manifold Dimension 1",
yaxis_title="Manifold Dimension 2",
height=400
)
return fig
def create_density_heatmap(df_filtered):
"""Create density heatmap showing communication hotspots."""
from scipy.stats import gaussian_kde
# Create 2D density estimation
x = df_filtered['x'].values
y = df_filtered['y'].values
# Create grid for density calculation
x_grid = np.linspace(x.min(), x.max(), 50)
y_grid = np.linspace(y.min(), y.max(), 50)
X_grid, Y_grid = np.meshgrid(x_grid, y_grid)
positions = np.vstack([X_grid.ravel(), Y_grid.ravel()])
# Calculate density
values = np.vstack([x, y])
kernel = gaussian_kde(values)
density = np.reshape(kernel(positions).T, X_grid.shape)
fig = go.Figure(data=go.Heatmap(
z=density,
x=x_grid,
y=y_grid,
colorscale='Viridis',
colorbar=dict(title="Communication Density")
))
# Overlay actual points
fig.add_trace(go.Scatter(
x=x, y=y,
mode='markers',
marker=dict(size=4, color='white', opacity=0.6),
name='Actual Communications',
hovertemplate='X: %{x:.3f}<br>Y: %{y:.3f}<extra></extra>'
))
fig.update_layout(
title="Communication Density Heatmap",
xaxis_title="Manifold Dimension 1",
yaxis_title="Manifold Dimension 2",
height=400
)
return fig
def create_feature_distributions(df_filtered, lens_selected):
"""Create feature distribution plots comparing species."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
fig = make_subplots(
rows=2, cols=2,
subplot_titles=[
f'CMT Alpha Distribution ({lens_selected})',
f'SRL Distribution ({lens_selected})',
'Manifold X Coordinate',
'Manifold Y Coordinate'
]
)
# Alpha distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species][alpha_col]
fig.add_trace(
go.Histogram(x=data, name=f'{species} Alpha', opacity=0.7, nbinsx=20),
row=1, col=1
)
# SRL distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species][srl_col]
fig.add_trace(
go.Histogram(x=data, name=f'{species} SRL', opacity=0.7, nbinsx=20),
row=1, col=2
)
# X coordinate distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species]['x']
fig.add_trace(
go.Histogram(x=data, name=f'{species} X', opacity=0.7, nbinsx=20),
row=2, col=1
)
# Y coordinate distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species]['y']
fig.add_trace(
go.Histogram(x=data, name=f'{species} Y', opacity=0.7, nbinsx=20),
row=2, col=2
)
fig.update_layout(
height=300,
title_text="Feature Distributions by Species",
showlegend=True
)
return fig
def create_correlation_matrix(df_filtered, lens_selected):
"""Create correlation matrix of CMT features."""
# Select relevant columns for correlation
feature_cols = ['x', 'y', 'z'] + [col for col in df_filtered.columns if col.startswith('feature_')]
cmt_cols = [f"diag_alpha_{lens_selected}", f"diag_srl_{lens_selected}"]
all_cols = feature_cols + cmt_cols
available_cols = [col for col in all_cols if col in df_filtered.columns]
if len(available_cols) < 2:
# Fallback with basic columns
available_cols = ['x', 'y', 'z']
# Calculate correlation matrix
corr_matrix = df_filtered[available_cols].corr()
fig = go.Figure(data=go.Heatmap(
z=corr_matrix.values,
x=corr_matrix.columns,
y=corr_matrix.columns,
colorscale='RdBu',
zmid=0,
colorbar=dict(title="Correlation"),
text=np.round(corr_matrix.values, 2),
texttemplate="%{text}",
textfont={"size": 10}
))
fig.update_layout(
title="Cross-Species Feature Correlations",
height=300,
xaxis_title="Features",
yaxis_title="Features"
)
return fig
def calculate_statistics(df_filtered, lens_selected):
"""Calculate comprehensive statistics for the filtered data."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
stats = {}
# Overall statistics
stats['total_points'] = len(df_filtered)
stats['human_count'] = len(df_filtered[df_filtered['source'] == 'Human'])
stats['dog_count'] = len(df_filtered[df_filtered['source'] == 'Dog'])
# CMT statistics by species
for species in ['Human', 'Dog']:
species_data = df_filtered[df_filtered['source'] == species]
if len(species_data) > 0:
stats[f'{species.lower()}_alpha_mean'] = species_data[alpha_col].mean()
stats[f'{species.lower()}_alpha_std'] = species_data[alpha_col].std()
stats[f'{species.lower()}_srl_mean'] = species_data[srl_col].mean()
stats[f'{species.lower()}_srl_std'] = species_data[srl_col].std()
# Geometric separation
if stats['human_count'] > 0 and stats['dog_count'] > 0:
human_center = df_filtered[df_filtered['source'] == 'Human'][['x', 'y', 'z']].mean()
dog_center = df_filtered[df_filtered['source'] == 'Dog'][['x', 'y', 'z']].mean()
stats['geometric_separation'] = np.sqrt(((human_center - dog_center) ** 2).sum())
return stats
def update_manifold_visualization(species_selection, emotion_selection, lens_selection,
alpha_min, alpha_max, srl_min, srl_max, feature_min, feature_max,
point_size, show_boundary, show_trajectories, color_scheme):
"""Main update function for the manifold visualization."""
# Filter data based on selections
df_filtered = df_combined.copy()
# Species filter
if species_selection:
df_filtered = df_filtered[df_filtered['source'].isin(species_selection)]
# Emotion filter
if emotion_selection:
df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)]
# CMT diagnostic filters
alpha_col = f"diag_alpha_{lens_selection}"
srl_col = f"diag_srl_{lens_selection}"
if alpha_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[alpha_col] >= alpha_min) &
(df_filtered[alpha_col] <= alpha_max)
]
if srl_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[srl_col] >= srl_min) &
(df_filtered[srl_col] <= srl_max)
]
# Feature magnitude filter (using first few feature columns if they exist)
feature_cols = [col for col in df_filtered.columns if col.startswith('feature_')]
if feature_cols:
feature_magnitudes = np.sqrt(df_filtered[feature_cols[:3]].pow(2).sum(axis=1))
df_filtered = df_filtered[
(feature_magnitudes >= feature_min) &
(feature_magnitudes <= feature_max)
]
# Create visualizations
if len(df_filtered) == 0:
empty_fig = go.Figure().add_annotation(
text="No data points match the current filters",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False
)
return (empty_fig, empty_fig, empty_fig, empty_fig, empty_fig,
"No data available", "No data available", "No data available")
# Main manifold plot
manifold_fig = create_enhanced_manifold_plot(
df_filtered, lens_selection, color_scheme, point_size,
show_boundary, show_trajectories
)
# Secondary plots
projection_fig = create_2d_projection_plot(df_filtered, color_scheme)
density_fig = create_density_heatmap(df_filtered)
distributions_fig = create_feature_distributions(df_filtered, lens_selection)
correlation_fig = create_correlation_matrix(df_filtered, lens_selection)
# Statistics
stats = calculate_statistics(df_filtered, lens_selection)
# Format statistics HTML
species_stats_html = f"""
<h4>📊 Data Overview</h4>
<p><b>Total Points:</b> {stats['total_points']}</p>
<p><b>Human:</b> {stats['human_count']} | <b>Dog:</b> {stats['dog_count']}</p>
<p><b>Ratio:</b> {stats['human_count']/(stats['dog_count']+1):.2f}:1</p>
"""
boundary_stats_html = f"""
<h4>🔬 Geometric Analysis</h4>
<p><b>Lens:</b> {lens_selection.title()}</p>
{"<p><b>Separation:</b> {:.3f}</p>".format(stats.get('geometric_separation', 0)) if 'geometric_separation' in stats else ""}
<p><b>Dimensions:</b> 3D UMAP</p>
"""
similarity_html = f"""
<h4>🔗 Species Comparison</h4>
<p><b>Human α:</b> {stats.get('human_alpha_mean', 0):.3f} ± {stats.get('human_alpha_std', 0):.3f}</p>
<p><b>Dog α:</b> {stats.get('dog_alpha_mean', 0):.3f} ± {stats.get('dog_alpha_std', 0):.3f}</p>
<p><b>Overlap Index:</b> {1 / (1 + stats.get('geometric_separation', 1)):.3f}</p>
"""
return (manifold_fig, projection_fig, density_fig, distributions_fig, correlation_fig,
species_stats_html, boundary_stats_html, similarity_html)
def resolve_audio_path(row: pd.Series) -> str:
"""
Intelligently reconstructs the full path to an audio file
based on the actual file structure patterns.
Dog files: combined/{label}/{filename} e.g., combined/bark/bark_bark (1).wav
Human files: human/Actor_XX/{filename} e.g., human/Actor_01/03-01-01-01-01-01-01.wav
"""
basename = str(row.get("filepath", ""))
source = row.get("source", "")
label = row.get("label", "")
# Check cache first
cache_key = f"{source}:{label}:{basename}"
if cache_key in _audio_path_cache:
return _audio_path_cache[cache_key]
resolved_path = basename # Default fallback
# For "Dog" data, the structure is: combined/{label}/{filename}
if source == "Dog":
# Try with label subdirectory first
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
else:
# Try without subdirectory in case files are flat
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
# For "Human" data, search within all "Actor_XX" subfolders
elif source == "Human":
if os.path.isdir(HUMAN_AUDIO_BASE_PATH):
for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH):
if actor_folder.startswith("Actor_"):
expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
break
# Try without subdirectory in case files are flat
if resolved_path == basename:
expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
# Try in local directories (for dummy data)
if resolved_path == basename:
if source == "Dog":
for label_dir in ["bark", "growl", "whine", "pant"]:
local_path = os.path.join(DOG_DIR, label_dir, basename)
if os.path.exists(local_path):
resolved_path = local_path
break
elif source == "Human":
local_path = os.path.join(HUMAN_DIR, "Actor_01", basename)
if os.path.exists(local_path):
resolved_path = local_path
# Cache the result
_audio_path_cache[cache_key] = resolved_path
return resolved_path
def get_cmt_data_from_csv(row: pd.Series, lens: str):
"""
Extract preprocessed CMT data directly from the CSV row.
No audio processing needed - everything is already computed!
"""
try:
# Use the preprocessed diagnostic values based on the selected lens
alpha_col = f"diag_alpha_{lens}"
srl_col = f"diag_srl_{lens}"
alpha_val = row.get(alpha_col, 0.0)
srl_val = row.get(srl_col, 0.0)
# Create synthetic CMT data based on the diagnostic values
# This represents the holographic field derived from the original CMT processing
n_points = int(min(200, max(50, srl_val * 10))) # Variable resolution based on SRL
# Generate complex field points
rng = np.random.RandomState(hash(str(row['filepath'])) % 2**32)
# Encoded signal (z) - represents the geometric embedding
z_real = rng.normal(0, alpha_val, n_points)
z_imag = rng.normal(0, alpha_val * 0.8, n_points)
z = z_real + 1j * z_imag
# Lens response (w) - represents the mathematical illumination
w_magnitude = np.abs(z) * srl_val
w_phase = np.angle(z) + rng.normal(0, 0.1, n_points)
w = w_magnitude * np.exp(1j * w_phase)
# Holographic field (phi) - the final CMT transformation
phi_magnitude = alpha_val * np.abs(w)
phi_phase = np.angle(w) * srl_val
phi = phi_magnitude * np.exp(1j * phi_phase)
return {
"phi": phi,
"w": w,
"z": z,
"original_count": n_points,
"final_count": len(phi),
"alpha": alpha_val,
"srl": srl_val
}
except Exception as e:
print(f"Error extracting CMT data from CSV row: {e}")
return None
def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int):
if z is None or phi is None or len(z) < 4: return None
points = np.vstack([np.real(z), np.imag(z)]).T
grid_x, grid_y = np.mgrid[
np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution),
np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution)
]
grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='cubic')
grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='cubic')
grid_phi = np.nan_to_num(grid_phi_real + 1j * grid_phi_imag)
return grid_x, grid_y, grid_phi
def create_holography_plot(z, phi, resolution, wavelength):
field_data = generate_holographic_field(z, phi, resolution)
if field_data is None: return go.Figure(layout={"title": "Not enough data for holography"})
grid_x, grid_y, grid_phi = field_data
mag_phi = np.abs(grid_phi)
phase_phi = np.angle(grid_phi)
# --- Wavelength to Colorscale Mapping ---
def wavelength_to_rgb(wl):
# Simple approximation to map visible spectrum to RGB
if 380 <= wl < 440: return f'rgb({-(wl - 440) / (440 - 380) * 255}, 0, 255)' # Violet
elif 440 <= wl < 495: return f'rgb(0, {(wl - 440) / (495 - 440) * 255}, 255)' # Blue
elif 495 <= wl < 570: return f'rgb(0, 255, {-(wl - 570) / (570 - 495) * 255})' # Green
elif 570 <= wl < 590: return f'rgb({(wl - 570) / (590 - 570) * 255}, 255, 0)' # Yellow
elif 590 <= wl < 620: return f'rgb(255, {-(wl - 620) / (620 - 590) * 255}, 0)' # Orange
elif 620 <= wl <= 750: return f'rgb(255, 0, 0)' # Red
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = go.Figure()
# 1. The Holographic Surface (Topology + Phase Interference)
fig.add_trace(go.Surface(
x=grid_x, y=grid_y, z=mag_phi,
surfacecolor=phase_phi,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
colorbar=dict(title='Φ Phase'),
name='Holographic Field',
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True, highlightwidth=10)
))
# 2. The original data points projected onto the surface
fig.add_trace(go.Scatter3d(
x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05, # slight offset
mode='markers',
marker=dict(size=3, color='black', symbol='x'),
name='Data Points'
))
# 3. The Vector Flow Field (using cones for direction)
grad_y, grad_x = np.gradient(mag_phi)
fig.add_trace(go.Cone(
x=grid_x.flatten(), y=grid_y.flatten(), z=mag_phi.flatten(),
u=-grad_x.flatten(), v=-grad_y.flatten(), w=np.full_like(mag_phi.flatten(), -0.1),
sizemode="absolute", sizeref=0.1,
anchor="tip",
colorscale='Greys',
showscale=False,
name='Vector Flow'
))
fig.update_layout(
title="Interactive Holographic Field Reconstruction",
scene=dict(
xaxis_title="Re(z) - Encoded Signal",
yaxis_title="Im(z) - Encoded Signal",
zaxis_title="|Φ| - Field Magnitude"
),
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def create_diagnostic_plots(z, w):
"""Creates a 2D plot showing the Aperture (z) and Lens Response (w)."""
if z is None or w is None:
return go.Figure(layout={"title": "Not enough data for diagnostic plots"})
fig = go.Figure()
# Aperture (Encoded Signal)
fig.add_trace(go.Scatter(
x=np.real(z), y=np.imag(z), mode='markers',
marker=dict(size=5, color='blue', opacity=0.6),
name='Aperture (z)'
))
# Lens Response
fig.add_trace(go.Scatter(
x=np.real(w), y=np.imag(w), mode='markers',
marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
name='Lens Response (w)'
))
fig.update_layout(
title="Diagnostic View: Aperture and Lens Response",
xaxis_title="Real Part",
yaxis_title="Imaginary Part",
legend_title="Signal Stage",
margin=dict(l=20, r=20, t=60, b=20)
)
return fig
def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, title1="Primary", title2="Comparison"):
"""Creates side-by-side holographic visualizations for comparison."""
field_data1 = generate_holographic_field(z1, phi1, resolution)
field_data2 = generate_holographic_field(z2, phi2, resolution)
if field_data1 is None or field_data2 is None:
return go.Figure(layout={"title": "Insufficient data for dual holography"})
grid_x1, grid_y1, grid_phi1 = field_data1
grid_x2, grid_y2, grid_phi2 = field_data2
mag_phi1, phase_phi1 = np.abs(grid_phi1), np.angle(grid_phi1)
mag_phi2, phase_phi2 = np.abs(grid_phi2), np.angle(grid_phi2)
# Wavelength to colorscale mapping
def wavelength_to_rgb(wl):
if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)'
elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)'
elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})'
elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)'
elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)'
elif 620 <= wl <= 750: return 'rgb(255, 0, 0)'
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'scene'}, {'type': 'scene'}]],
subplot_titles=[title1, title2]
)
# Left plot (Primary)
fig.add_trace(go.Surface(
x=grid_x1, y=grid_y1, z=mag_phi1,
surfacecolor=phase_phi1,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
showscale=False,
name=title1,
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
), row=1, col=1)
# Right plot (Comparison)
fig.add_trace(go.Surface(
x=grid_x2, y=grid_y2, z=mag_phi2,
surfacecolor=phase_phi2,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
showscale=False,
name=title2,
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
), row=1, col=2)
# Add data points
if z1 is not None and phi1 is not None:
fig.add_trace(go.Scatter3d(
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05,
mode='markers', marker=dict(size=3, color='black', symbol='x'),
name=f'{title1} Points', showlegend=False
), row=1, col=1)
if z2 is not None and phi2 is not None:
fig.add_trace(go.Scatter3d(
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05,
mode='markers', marker=dict(size=3, color='black', symbol='x'),
name=f'{title2} Points', showlegend=False
), row=1, col=2)
fig.update_layout(
title="Side-by-Side Cross-Species Holographic Comparison",
scene=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
scene2=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
margin=dict(l=0, r=0, b=0, t=60),
height=600
)
return fig
def create_dual_diagnostic_plots(z1, w1, z2, w2, title1="Primary", title2="Comparison"):
"""Creates side-by-side diagnostic plots for cross-species comparison."""
fig = make_subplots(
rows=1, cols=2,
subplot_titles=[f"{title1}: Aperture & Lens Response", f"{title2}: Aperture & Lens Response"]
)
if z1 is not None and w1 is not None:
# Primary aperture and response
fig.add_trace(go.Scatter(
x=np.real(z1), y=np.imag(z1), mode='markers',
marker=dict(size=5, color='blue', opacity=0.6),
name=f'{title1} Aperture', showlegend=True
), row=1, col=1)
fig.add_trace(go.Scatter(
x=np.real(w1), y=np.imag(w1), mode='markers',
marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
name=f'{title1} Response', showlegend=True
), row=1, col=1)
if z2 is not None and w2 is not None:
# Comparison aperture and response
fig.add_trace(go.Scatter(
x=np.real(z2), y=np.imag(z2), mode='markers',
marker=dict(size=5, color='darkblue', opacity=0.6),
name=f'{title2} Aperture', showlegend=True
), row=1, col=2)
fig.add_trace(go.Scatter(
x=np.real(w2), y=np.imag(w2), mode='markers',
marker=dict(size=5, color='darkred', opacity=0.6, symbol='x'),
name=f'{title2} Response', showlegend=True
), row=1, col=2)
fig.update_layout(
title="Cross-Species Diagnostic Comparison",
height=400,
margin=dict(l=20, r=20, t=60, b=20)
)
fig.update_xaxes(title_text="Real Part", row=1, col=1)
fig.update_yaxes(title_text="Imaginary Part", row=1, col=1)
fig.update_xaxes(title_text="Real Part", row=1, col=2)
fig.update_yaxes(title_text="Imaginary Part", row=1, col=2)
return fig
def create_entropy_geometry_plot(phi: np.ndarray):
"""Creates a plot showing magnitude/phase distributions and their entropy."""
if phi is None or len(phi) < 2:
return go.Figure(layout={"title": "Not enough data for entropy analysis"})
magnitudes = np.abs(phi)
phases = np.angle(phi)
# Calculate entropy
mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True)
phase_hist, _ = np.histogram(phases, bins='auto', density=True)
mag_entropy = shannon_entropy(mag_hist)
phase_entropy = shannon_entropy(phase_hist)
fig = make_subplots(rows=1, cols=2, subplot_titles=(
f"Magnitude Distribution (Entropy: {mag_entropy:.3f})",
f"Phase Distribution (Entropy: {phase_entropy:.3f})"
))
fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1)
fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2)
fig.update_layout(
title_text="Informational-Entropy Geometry",
showlegend=False,
bargap=0.1,
margin=dict(l=20, r=20, t=60, b=20)
)
fig.update_xaxes(title_text="|Φ|", row=1, col=1)
fig.update_yaxes(title_text="Count", row=1, col=1)
fig.update_xaxes(title_text="angle(Φ)", row=1, col=2)
fig.update_yaxes(title_text="Count", row=1, col=2)
return fig
# ---------------------------------------------------------------
# Gradio UI
# ---------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo:
gr.Markdown("# Exhaustive CMT Explorer for Interspecies Communication v3.2")
file_choices = df_combined["filepath"].astype(str).tolist()
default_primary = file_choices[0] if file_choices else ""
with gr.Tabs():
with gr.TabItem("🌌 Universal Manifold Explorer"):
gr.Markdown("""
# 🎯 **First Universal Interspecies Communication Map**
*Discover the hidden mathematical geometry underlying human and dog communication*
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🔬 **Analysis Controls**")
# Species filtering
species_filter = gr.CheckboxGroup(
label="Species Selection",
choices=["Human", "Dog"],
value=["Human", "Dog"],
info="Select which species to display"
)
# Emotional state filtering
emotion_filter = gr.CheckboxGroup(
label="Emotional States",
choices=list(df_combined['label'].unique()),
value=list(df_combined['label'].unique()),
info="Filter by emotional expression"
)
# CMT Lens selection for coloring
lens_selector = gr.Dropdown(
label="Mathematical Lens View",
choices=["gamma", "zeta", "airy", "bessel"],
value="gamma",
info="Choose which mathematical lens to use for analysis"
)
# Advanced filtering sliders
with gr.Accordion("🎛️ Advanced CMT Filters", open=False):
gr.Markdown("**CMT Alpha Range (Geometric Consistency)**")
with gr.Row():
alpha_min = gr.Slider(
label="Alpha Min", minimum=0, maximum=1, value=0, step=0.01
)
alpha_max = gr.Slider(
label="Alpha Max", minimum=0, maximum=1, value=1, step=0.01
)
gr.Markdown("**SRL Range (Complexity Level)**")
with gr.Row():
srl_min = gr.Slider(
label="SRL Min", minimum=0, maximum=100, value=0, step=1
)
srl_max = gr.Slider(
label="SRL Max", minimum=0, maximum=100, value=100, step=1
)
gr.Markdown("**Feature Magnitude Range**")
with gr.Row():
feature_min = gr.Slider(
label="Feature Min", minimum=-3, maximum=3, value=-3, step=0.1
)
feature_max = gr.Slider(
label="Feature Max", minimum=-3, maximum=3, value=3, step=0.1
)
# Visualization options
with gr.Accordion("🎨 Visualization Options", open=True):
point_size = gr.Slider(
label="Point Size",
minimum=2, maximum=15, value=6, step=1
)
show_species_boundary = gr.Checkbox(
label="Show Species Boundary",
value=True,
info="Display geometric boundary between species"
)
show_trajectories = gr.Checkbox(
label="Show Communication Trajectories",
value=False,
info="Display colorful paths connecting similar emotional expressions across species"
)
color_scheme = gr.Dropdown(
label="Color Scheme",
choices=["Species", "Emotion", "CMT_Alpha", "CMT_SRL", "Cluster"],
value="Species",
info="Choose coloring strategy"
)
# Real-time analysis
with gr.Accordion("🔍 Real-Time Analysis", open=False):
analysis_button = gr.Button("🔬 Analyze Selected Region", variant="primary")
selected_info = gr.HTML(
label="Selection Analysis",
value="<i>Select points on the manifold for detailed analysis</i>"
)
with gr.Column(scale=3):
# Main 3D manifold plot
manifold_plot = gr.Plot(
label="Universal Communication Manifold"
)
# Statistics panel below the plot
with gr.Row():
with gr.Column():
species_stats = gr.HTML(
label="Species Statistics",
value=""
)
with gr.Column():
boundary_stats = gr.HTML(
label="Boundary Analysis",
value=""
)
with gr.Column():
similarity_stats = gr.HTML(
label="Cross-Species Similarity",
value=""
)
# Secondary analysis views
with gr.Row():
with gr.Column():
# 2D projection plot
projection_2d = gr.Plot(
label="2D Projection View"
)
with gr.Column():
# Density heatmap
density_plot = gr.Plot(
label="Communication Density Map"
)
# Bottom analysis panel
with gr.Row():
with gr.Column():
# Feature distribution plots
feature_distributions = gr.Plot(
label="CMT Feature Distributions"
)
with gr.Column():
# Correlation matrix
correlation_matrix = gr.Plot(
label="Cross-Species Feature Correlations"
)
# Wire up all the interactive components
manifold_inputs = [
species_filter, emotion_filter, lens_selector,
alpha_min, alpha_max, srl_min, srl_max, feature_min, feature_max,
point_size, show_species_boundary, show_trajectories, color_scheme
]
manifold_outputs = [
manifold_plot, projection_2d, density_plot,
feature_distributions, correlation_matrix,
species_stats, boundary_stats, similarity_stats
]
# Set up event handlers for real-time updates
for component in manifold_inputs:
component.change(
update_manifold_visualization,
inputs=manifold_inputs,
outputs=manifold_outputs
)
# Initialize the plots with default values
demo.load(
lambda: update_manifold_visualization(
["Human", "Dog"], # species_selection
list(df_combined['label'].unique()), # emotion_selection
"gamma", # lens_selection
0, # alpha_min
1, # alpha_max
0, # srl_min
100, # srl_max
-3, # feature_min
3, # feature_max
6, # point_size
True, # show_boundary
False, # show_trajectories
"Species" # color_scheme
),
outputs=manifold_outputs
)
with gr.TabItem("Interactive Holography"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Cross-Species Holography Controls")
# Species selection and automatic pairing
species_dropdown = gr.Dropdown(
label="Select Species",
choices=["Dog", "Human"],
value="Dog"
)
# Primary file selection (filtered by species)
dog_files = df_combined[df_combined["source"] == "Dog"]["filepath"].astype(str).tolist()
human_files = df_combined[df_combined["source"] == "Human"]["filepath"].astype(str).tolist()
primary_dropdown = gr.Dropdown(
label="Primary Audio File",
choices=dog_files,
value=dog_files[0] if dog_files else None
)
# Automatically found neighbor (from opposite species)
neighbor_dropdown = gr.Dropdown(
label="Auto-Found Cross-Species Neighbor",
choices=human_files,
value=human_files[0] if human_files else None,
interactive=True # Allow manual override
)
holo_lens_dropdown = gr.Dropdown(label="CMT Lens", choices=["gamma", "zeta", "airy", "bessel"], value="gamma")
holo_resolution_slider = gr.Slider(label="Field Resolution", minimum=20, maximum=100, step=5, value=40)
holo_wavelength_slider = gr.Slider(label="Illumination Wavelength (nm)", minimum=380, maximum=750, step=5, value=550)
# Information panels
primary_info_html = gr.HTML(label="Primary Audio Info")
neighbor_info_html = gr.HTML(label="Neighbor Audio Info")
# Audio players
primary_audio_out = gr.Audio(label="Primary Audio")
neighbor_audio_out = gr.Audio(label="Neighbor Audio")
with gr.Column(scale=2):
dual_holography_plot = gr.Plot(label="Side-by-Side Holographic Comparison")
dual_diagnostic_plot = gr.Plot(label="Cross-Species Diagnostic Comparison")
def update_file_choices(species):
"""Update the primary file dropdown based on selected species."""
species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist()
return species_files
def update_cross_species_view(species, primary_file, neighbor_file, lens, resolution, wavelength):
if not primary_file:
empty_fig = go.Figure(layout={"title": "Please select a primary file."})
return empty_fig, empty_fig, "", "", None, None
# Get primary row
primary_row = df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
]) > 0 else None
if primary_row is None:
empty_fig = go.Figure(layout={"title": "Primary file not found."})
return empty_fig, empty_fig, "", "", None, None, []
# Find cross-species neighbor if not manually selected
if not neighbor_file:
neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined)
if neighbor_row is not None:
neighbor_file = neighbor_row['filepath']
else:
# Get manually selected neighbor
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_row = df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
]) > 0 else None
# Get CMT data directly from CSV (no audio processing needed!)
print(f"📊 Using preprocessed CMT data for: {primary_row['filepath']} ({lens} lens)")
primary_cmt = get_cmt_data_from_csv(primary_row, lens)
neighbor_cmt = None
if neighbor_row is not None:
print(f"📊 Using preprocessed CMT data for: {neighbor_row['filepath']} ({lens} lens)")
neighbor_cmt = get_cmt_data_from_csv(neighbor_row, lens)
# Get audio file paths only for playback
primary_fp = resolve_audio_path(primary_row)
neighbor_fp = resolve_audio_path(neighbor_row) if neighbor_row is not None else None
# Create visualizations
if primary_cmt and neighbor_cmt:
primary_title = f"{species}: {primary_row.get('label', 'Unknown')}"
neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}"
dual_holo_fig = create_dual_holography_plot(
primary_cmt["z"], primary_cmt["phi"],
neighbor_cmt["z"], neighbor_cmt["phi"],
resolution, wavelength, primary_title, neighbor_title
)
dual_diag_fig = create_dual_diagnostic_plots(
primary_cmt["z"], primary_cmt["w"],
neighbor_cmt["z"], neighbor_cmt["w"],
primary_title, neighbor_title
)
else:
dual_holo_fig = go.Figure(layout={"title": "Error processing audio files"})
dual_diag_fig = go.Figure(layout={"title": "Error processing audio files"})
# Build info strings with CMT diagnostic values
primary_info = f"""
<b>Primary:</b> {primary_row['filepath']}<br>
<b>Species:</b> {primary_row['source']}<br>
<b>Label:</b> {primary_row.get('label', 'N/A')}<br>
<b>CMT α-{lens}:</b> {primary_cmt['alpha']:.4f}<br>
<b>CMT SRL-{lens}:</b> {primary_cmt['srl']:.4f}<br>
<b>Field Points:</b> {primary_cmt['final_count'] if primary_cmt else 0}
"""
neighbor_info = ""
if neighbor_row is not None:
neighbor_info = f"""
<b>Neighbor:</b> {neighbor_row['filepath']}<br>
<b>Species:</b> {neighbor_row['source']}<br>
<b>Label:</b> {neighbor_row.get('label', 'N/A')}<br>
<b>CMT α-{lens}:</b> {neighbor_cmt['alpha']:.4f}<br>
<b>CMT SRL-{lens}:</b> {neighbor_cmt['srl']:.4f}<br>
<b>Field Points:</b> {neighbor_cmt['final_count'] if neighbor_cmt else 0}
"""
# Update neighbor dropdown choices
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_choices = df_combined[df_combined["source"] == opposite_species]["filepath"].astype(str).tolist()
# Audio files
primary_audio = primary_fp if primary_fp and os.path.exists(primary_fp) else None
neighbor_audio = neighbor_fp if neighbor_row is not None and neighbor_fp and os.path.exists(neighbor_fp) else None
return (dual_holo_fig, dual_diag_fig, primary_info, neighbor_info,
primary_audio, neighbor_audio)
# Event handlers
def update_dropdowns_on_species_change(species):
"""Update both primary and neighbor dropdowns when species changes."""
species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist()
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_files = df_combined[df_combined["source"] == opposite_species]["filepath"].astype(str).tolist()
primary_value = species_files[0] if species_files else ""
neighbor_value = neighbor_files[0] if neighbor_files else ""
return (
gr.Dropdown(choices=species_files, value=primary_value),
gr.Dropdown(choices=neighbor_files, value=neighbor_value)
)
species_dropdown.change(
update_dropdowns_on_species_change,
inputs=[species_dropdown],
outputs=[primary_dropdown, neighbor_dropdown]
)
cross_species_inputs = [species_dropdown, primary_dropdown, neighbor_dropdown,
holo_lens_dropdown, holo_resolution_slider, holo_wavelength_slider]
cross_species_outputs = [dual_holography_plot, dual_diagnostic_plot,
primary_info_html, neighbor_info_html,
primary_audio_out, neighbor_audio_out]
# Only bind change events, not load events to avoid overwhelming initialization
primary_dropdown.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
neighbor_dropdown.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
holo_lens_dropdown.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
holo_resolution_slider.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
holo_wavelength_slider.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
if __name__ == "__main__":
demo.launch(share=True, debug=True)