Spaces:
Sleeping
Sleeping
File size: 68,724 Bytes
b8daacb 6f06eba b8daacb 6f06eba b8daacb 6f06eba b8daacb 6f06eba b8daacb 6f06eba b8daacb 6f06eba b8daacb 6f06eba b8daacb ad689b1 b8daacb 4949adb b8daacb 4949adb b8daacb ad689b1 b8daacb 4949adb b8daacb 4949adb b8daacb 6f06eba b8daacb 4949adb b8daacb 4949adb b8daacb 4949adb b8daacb 66b4da3 b8daacb 66b4da3 b8daacb 4949adb b8daacb 66b4da3 b8daacb 66b4da3 b8daacb 66b4da3 b8daacb 66b4da3 b8daacb 66b4da3 b8daacb 66b4da3 b8daacb 66b4da3 b8daacb 66b4da3 b8daacb 6f06eba b8daacb 4949adb b8daacb 6f06eba b8daacb 6f06eba b8daacb 6f06eba b8daacb 4949adb b8daacb 6f06eba b8daacb 6f06eba b8daacb 6f06eba b8daacb 6f06eba b8daacb 4949adb b8daacb 6f06eba 4949adb b8daacb 4949adb b8daacb 4949adb b8daacb 4949adb b8daacb 4949adb b8daacb 4949adb b8daacb 4949adb b8daacb 4949adb b8daacb 4949adb b8daacb 4949adb b8daacb ad689b1 b8daacb ad689b1 b8daacb ad689b1 b8daacb 4949adb b8daacb ad689b1 b8daacb ad689b1 b8daacb ad689b1 b8daacb 6f06eba b8daacb 6f06eba b8daacb 6f06eba b8daacb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 |
import os
import warnings
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from umap import UMAP
from sklearn.cluster import KMeans
from scipy.stats import entropy as shannon_entropy
from scipy import special as sp_special
from scipy.interpolate import griddata
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cdist
import soundfile as sf
import gradio as gr
# ================================================================
# Unified Communication Manifold Explorer & CMT Visualizer v4.0
# - Adds side-by-side comparison capabilities from HTML draft
# - Implements cross-species neighbor finding for grammar mapping
# - Separates human and dog audio with automatic pairing
# - Enhanced dual visualization for comparative analysis
# ================================================================
# - Adds Interactive Holography tab for full field reconstruction.
# - Interpolates the continuous CMT state-space (Ξ¦ field).
# - Visualizes topology, vector flow, and phase interference.
# - Adds informational-entropy-geometry visualization.
# - Prioritizes specific Colab paths for data loading.
# ================================================================
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
print("Initializing the Interactive CMT Holography Explorer...")
# ---------------------------------------------------------------
# Data setup
# ---------------------------------------------------------------
# Paths for local execution (used for dummy data generation fallback)
BASE_DIR = os.path.abspath(os.getcwd())
DATA_DIR = os.path.join(BASE_DIR, "data")
DOG_DIR = os.path.join(DATA_DIR, "dog")
HUMAN_DIR = os.path.join(DATA_DIR, "human")
# Paths for different deployment environments
# Priority order: 1) Hugging Face Spaces (repo root), 2) Colab, 3) Local
HF_CSV_DOG = "cmt_dog_sound_analysis.csv"
HF_CSV_HUMAN = "cmt_human_speech_analysis.csv"
COLAB_CSV_DOG = "/content/cmt_dog_sound_analysis.csv"
COLAB_CSV_HUMAN = "/content/cmt_human_speech_analysis.csv"
# Determine which environment we're in and set paths accordingly
if os.path.exists(HF_CSV_DOG) and os.path.exists(HF_CSV_HUMAN):
# Hugging Face Spaces - files in repo root
CSV_DOG = HF_CSV_DOG
CSV_HUMAN = HF_CSV_HUMAN
print("Using Hugging Face Spaces paths")
elif os.path.exists(COLAB_CSV_DOG) and os.path.exists(COLAB_CSV_HUMAN):
# Google Colab environment
CSV_DOG = COLAB_CSV_DOG
CSV_HUMAN = COLAB_CSV_HUMAN
print("Using Google Colab paths")
else:
# Fallback to local or will trigger dummy data
CSV_DOG = HF_CSV_DOG # Try repo root first
CSV_HUMAN = HF_CSV_HUMAN
print("Falling back to local/dummy data paths")
# These are for creating dummy audio files if needed
os.makedirs(DOG_DIR, exist_ok=True)
os.makedirs(os.path.join(HUMAN_DIR, "Actor_01"), exist_ok=True)
# --- Audio Data Configuration (Platform-aware paths) ---
# For Hugging Face Spaces, audio files might be in the repo or need different handling
# For Colab, they're in Google Drive
if os.path.exists("/content/drive/MyDrive/combined"):
# Google Colab with mounted Drive
DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined'
HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human'
print("Using Google Drive audio paths")
elif os.path.exists("combined") and os.path.exists("human"):
# Hugging Face Spaces with audio in repo root
DOG_AUDIO_BASE_PATH = 'combined'
HUMAN_AUDIO_BASE_PATH = 'human'
print("Using Hugging Face Spaces audio paths (repo root)")
elif os.path.exists("audio/combined"):
# Alternative Hugging Face Spaces location
DOG_AUDIO_BASE_PATH = 'audio/combined'
HUMAN_AUDIO_BASE_PATH = 'audio/human'
print("Using Hugging Face Spaces audio paths (audio subdir)")
else:
# Fallback to local dummy paths
DOG_AUDIO_BASE_PATH = DOG_DIR
HUMAN_AUDIO_BASE_PATH = HUMAN_DIR
print("Using local dummy audio paths")
print(f"Audio base paths configured:")
print(f"- Dog audio base: {DOG_AUDIO_BASE_PATH}")
print(f"- Human audio base: {HUMAN_AUDIO_BASE_PATH}")
# ---------------------------------------------------------------
# Cross-Species Analysis Functions
# ---------------------------------------------------------------
def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5):
"""
Finds the closest neighbor from the opposite species using feature similarity.
This enables cross-species pattern mapping for grammar development.
"""
selected_source = selected_row['source']
opposite_source = 'Human' if selected_source == 'Dog' else 'Dog'
# Get feature columns for similarity calculation
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
if not feature_cols:
# Fallback to any numeric columns if no feature columns exist
numeric_cols = df_combined.select_dtypes(include=[np.number]).columns
feature_cols = [c for c in numeric_cols if c not in ['x', 'y', 'z', 'cluster']]
if not feature_cols:
# Random selection if no suitable features found
opposite_species_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_species_data) > 0:
return opposite_species_data.iloc[0]
return None
# Extract features for the selected row
selected_features = selected_row[feature_cols].values.reshape(1, -1)
selected_features = np.nan_to_num(selected_features)
# Get all rows from the opposite species
opposite_species_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_species_data) == 0:
return None
# Extract features for opposite species
opposite_features = opposite_species_data[feature_cols].values
opposite_features = np.nan_to_num(opposite_features)
# Calculate cosine similarity (better for high-dimensional feature spaces)
similarities = cosine_similarity(selected_features, opposite_features)[0]
# Find the index of the most similar neighbor
most_similar_idx = np.argmax(similarities)
nearest_neighbor = opposite_species_data.iloc[most_similar_idx]
return nearest_neighbor
# ---------------------------------------------------------------
# Load datasets (Colab-first paths)
# ---------------------------------------------------------------
# Debug: Show what files we're looking for and what exists
print(f"Looking for CSV files:")
print(f"- Dog CSV: {CSV_DOG} (exists: {os.path.exists(CSV_DOG)})")
print(f"- Human CSV: {CSV_HUMAN} (exists: {os.path.exists(CSV_HUMAN)})")
print(f"Current working directory: {os.getcwd()}")
print(f"Files in current directory: {os.listdir('.')}")
if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN):
print(f"β
Found existing data files. Loading from:\n- {CSV_DOG}\n- {CSV_HUMAN}")
df_dog = pd.read_csv(CSV_DOG)
df_human = pd.read_csv(CSV_HUMAN)
print(f"Successfully loaded data: {len(df_dog)} dog rows, {len(df_human)} human rows")
else:
print("β Could not find one or both CSV files. Generating and using in-memory dummy data.")
# This section is for DUMMY DATA GENERATION ONLY.
# It runs if the primary CSVs are not found and does NOT write files.
n_dummy_items_per_category = 50
rng = np.random.default_rng(42)
# Ensure labels match the exact number of items
base_dog_labels = ["bark", "growl", "whine", "pant"]
base_human_labels = ["speech", "laugh", "cry", "shout"]
dog_labels = [base_dog_labels[i % len(base_dog_labels)] for i in range(n_dummy_items_per_category)]
human_labels = [base_human_labels[i % len(base_human_labels)] for i in range(n_dummy_items_per_category)]
dog_rows = {
"feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
"label": dog_labels, "filepath": [f"dog_{i}.wav" for i in range(n_dummy_items_per_category)],
"diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
"zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
}
human_rows = {
"feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
"label": human_labels, "filepath": [f"human_{i}.wav" for i in range(n_dummy_items_per_category)],
"diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
"zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
}
df_dog = pd.DataFrame(dog_rows)
df_human = pd.DataFrame(human_rows)
# We still create dummy audio files for the UI to use if needed
sr = 22050
dur = 2.0
t = np.linspace(0, dur, int(sr * dur), endpoint=False)
for i in range(n_dummy_items_per_category):
tone_freq = 220 + 20 * (i % 5)
audio = 0.1 * np.sin(2 * np.pi * tone_freq * t) + 0.02 * rng.standard_normal(t.shape)
audio = audio / (np.max(np.abs(audio)) + 1e-9)
dog_label = dog_labels[i]
dog_label_dir = os.path.join(DOG_DIR, dog_label)
os.makedirs(dog_label_dir, exist_ok=True)
sf.write(os.path.join(dog_label_dir, f"dog_{i}.wav"), audio, sr)
sf.write(os.path.join(HUMAN_DIR, "Actor_01", f"human_{i}.wav"), audio, sr)
print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows.")
df_dog["source"], df_human["source"] = "Dog", "Human"
df_combined = pd.concat([df_dog, df_human], ignore_index=True)
# ---------------------------------------------------------------
# Expanded CMT implementation
# ---------------------------------------------------------------
class ExpandedCMT:
def __init__(self):
self.c1, self.c2 = 0.587 + 1.223j, -0.994 + 0.0j
# A large but finite number to represent the pole at z=1 for Zeta
self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j
self.lens_library = {
"gamma": sp_special.gamma,
"zeta": self._regularized_zeta, # Use the robust zeta function
"airy": lambda z: sp_special.airy(z)[0],
"bessel": lambda z: sp_special.jv(0, z),
}
def _regularized_zeta(self, z: np.ndarray) -> np.ndarray:
"""
A wrapper around scipy's zeta function to handle the pole at z=1.
"""
# Create a copy to avoid modifying the original array
z_out = np.copy(z).astype(np.complex128)
# Find where the real part is close to 1 and the imaginary part is close to 0
pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0)
# Apply the standard zeta function to non-pole points
non_pole_points = ~pole_condition
z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1)
# Apply the regularization constant to the pole points
z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION
return z_out
def _robust_normalize(self, signal: np.ndarray) -> np.ndarray:
if signal.size == 0: return signal
Q1, Q3 = np.percentile(signal, [25, 75])
IQR = Q3 - Q1
if IQR < 1e-9:
median, mad = np.median(signal), np.median(np.abs(signal - np.median(signal)))
return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9)
lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
clipped = np.clip(signal, lower, upper)
s_min, s_max = np.min(clipped), np.max(clipped)
return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0
def _encode(self, signal: np.ndarray) -> np.ndarray:
N = len(signal)
if N == 0: return signal.astype(np.complex128)
i = np.arange(N)
theta = 2.0 * np.pi * i / N
f_k, A_k = np.array([271, 341, 491]), np.array([0.033, 0.050, 0.100])
phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0)
Theta = theta + phi
exp_iTheta = np.exp(1j * Theta)
g, m = signal * exp_iTheta, np.abs(signal) * exp_iTheta
return 0.5 * g + 0.5 * m
def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str):
lens_fn = self.lens_library.get(lens_type)
if not lens_fn: raise ValueError(f"Lens '{lens_type}' not found.")
with np.errstate(all="ignore"):
w = lens_fn(encoded_signal)
phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal)
finite_mask = np.isfinite(phi_trajectory)
return phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask], len(encoded_signal), len(phi_trajectory[finite_mask])
# ---------------------------------------------------------------
# Feature preparation and UMAP embedding
# ---------------------------------------------------------------
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
features = np.nan_to_num(df_combined[feature_cols].to_numpy())
reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42)
df_combined[["x", "y", "z"]] = reducer.fit_transform(features)
kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))), random_state=42, n_init=10)
df_combined["cluster"] = kmeans.fit_predict(features)
df_combined["chaos_score"] = np.log1p(df_combined.get("diag_srl_gamma", 0)) / (df_combined.get("diag_alpha_gamma", 1) + 1e-2)
# ---------------------------------------------------------------
# Core Visualization and Analysis Functions
# ---------------------------------------------------------------
# Cache for resolved audio paths and CMT data to avoid repeated computations
_audio_path_cache = {}
_cmt_data_cache = {}
# Advanced manifold analysis functions
def calculate_species_boundary(df_combined):
"""Calculate the geometric boundary between species using support vector machines."""
from sklearn.svm import SVC
# Prepare data for boundary calculation
human_data = df_combined[df_combined['source'] == 'Human'][['x', 'y', 'z']].values
dog_data = df_combined[df_combined['source'] == 'Dog'][['x', 'y', 'z']].values
# Create binary classification data
X = np.vstack([human_data, dog_data])
y = np.hstack([np.ones(len(human_data)), np.zeros(len(dog_data))])
# Fit SVM for boundary
svm = SVC(kernel='rbf', probability=True)
svm.fit(X, y)
# Create boundary surface
x_range = np.linspace(X[:, 0].min(), X[:, 0].max(), 20)
y_range = np.linspace(X[:, 1].min(), X[:, 1].max(), 20)
z_range = np.linspace(X[:, 2].min(), X[:, 2].max(), 20)
xx, yy = np.meshgrid(x_range, y_range)
boundary_points = []
for z_val in z_range:
grid_points = np.c_[xx.ravel(), yy.ravel(), np.full(xx.ravel().shape, z_val)]
probabilities = svm.predict_proba(grid_points)[:, 1]
# Find points near decision boundary (probability ~ 0.5)
boundary_mask = np.abs(probabilities - 0.5) < 0.05
if np.any(boundary_mask):
boundary_points.extend(grid_points[boundary_mask])
return np.array(boundary_points) if boundary_points else None
def create_enhanced_manifold_plot(df_filtered, lens_selected, color_scheme, point_size,
show_boundary, show_trajectories):
"""Create the main 3D manifold visualization with all advanced features."""
# Get CMT diagnostic values for the selected lens
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
# Determine color values based on scheme
if color_scheme == "Species":
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']]
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']] # Blue for Dog, Orange for Human
colorbar_title = "Species (Blue=Dog, Orange=Human)"
elif color_scheme == "Emotion":
unique_emotions = df_filtered['label'].unique()
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)}
color_values = [emotion_map[label] for label in df_filtered['label']]
colorscale = 'Viridis'
colorbar_title = "Emotional State"
elif color_scheme == "CMT_Alpha":
color_values = df_filtered[alpha_col].values
colorscale = 'Plasma'
colorbar_title = f"CMT Alpha ({lens_selected})"
elif color_scheme == "CMT_SRL":
color_values = df_filtered[srl_col].values
colorscale = 'Turbo'
colorbar_title = f"SRL Complexity ({lens_selected})"
else: # Cluster
color_values = df_filtered['cluster'].values
colorscale = 'Plotly3'
colorbar_title = "Cluster ID"
# Create hover text with rich information
hover_text = []
for _, row in df_filtered.iterrows():
hover_info = f"""
<b>{row['source']}</b>: {row['label']}<br>
File: {row['filepath']}<br>
<b>CMT Diagnostics ({lens_selected}):</b><br>
Ξ±: {row[alpha_col]:.4f}<br>
SRL: {row[srl_col]:.4f}<br>
Coordinates: ({row['x']:.3f}, {row['y']:.3f}, {row['z']:.3f})
"""
hover_text.append(hover_info)
# Create main scatter plot
fig = go.Figure()
# Add main data points
fig.add_trace(go.Scatter3d(
x=df_filtered['x'],
y=df_filtered['y'],
z=df_filtered['z'],
mode='markers',
marker=dict(
size=point_size,
color=color_values,
colorscale=colorscale,
showscale=True,
colorbar=dict(title=colorbar_title),
opacity=0.8,
line=dict(width=0.5, color='rgba(50,50,50,0.5)')
),
text=hover_text,
hovertemplate='%{text}<extra></extra>',
name='Communications'
))
# Add species boundary if requested
if show_boundary:
boundary_points = calculate_species_boundary(df_filtered)
if boundary_points is not None and len(boundary_points) > 0:
fig.add_trace(go.Scatter3d(
x=boundary_points[:, 0],
y=boundary_points[:, 1],
z=boundary_points[:, 2],
mode='markers',
marker=dict(
size=2,
color='red',
opacity=0.3
),
name='Species Boundary',
hovertemplate='Species Boundary<extra></extra>'
))
# Add trajectories if requested
if show_trajectories:
# Create colorful trajectories between similar emotional states
emotion_colors = {
'angry': '#FF4444',
'happy': '#44FF44',
'sad': '#4444FF',
'fearful': '#FF44FF',
'neutral': '#FFFF44',
'surprised': '#44FFFF',
'disgusted': '#FF8844',
'bark': '#FF6B35',
'growl': '#8B4513',
'whine': '#9370DB',
'pant': '#20B2AA',
'speech': '#1E90FF',
'laugh': '#FFD700',
'cry': '#4169E1',
'shout': '#DC143C'
}
for i, emotion in enumerate(df_filtered['label'].unique()):
emotion_data = df_filtered[df_filtered['label'] == emotion]
if len(emotion_data) > 1:
# Get color for this emotion, fallback to cycle through colors
base_colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7', '#DDA0DD', '#98D8C8', '#F7DC6F']
emotion_color = emotion_colors.get(emotion.lower(), base_colors[i % len(base_colors)])
# Create trajectories connecting points of same emotional state
x_coords = emotion_data['x'].values
y_coords = emotion_data['y'].values
z_coords = emotion_data['z'].values
# Sort by one dimension to create smoother trajectories
sort_indices = np.argsort(x_coords)
x_sorted = x_coords[sort_indices]
y_sorted = y_coords[sort_indices]
z_sorted = z_coords[sort_indices]
fig.add_trace(go.Scatter3d(
x=x_sorted,
y=y_sorted,
z=z_sorted,
mode='lines+markers',
line=dict(
width=4,
color=emotion_color,
dash='dash'
),
marker=dict(
size=3,
color=emotion_color,
opacity=0.8
),
name=f'{emotion.title()} Path',
showlegend=True,
hovertemplate=f'<b>{emotion.title()} Communication Path</b><br>' +
'X: %{x:.3f}<br>Y: %{y:.3f}<br>Z: %{z:.3f}<extra></extra>',
opacity=0.7
))
# Update layout
fig.update_layout(
title={
'text': "π Universal Interspecies Communication Manifold<br><sub>First mathematical map of cross-species communication geometry</sub>",
'x': 0.5,
'xanchor': 'center'
},
scene=dict(
xaxis_title='Manifold Dimension 1',
yaxis_title='Manifold Dimension 2',
zaxis_title='Manifold Dimension 3',
camera=dict(
eye=dict(x=1.5, y=1.5, z=1.5)
),
bgcolor='rgba(0,0,0,0)',
aspectmode='cube'
),
margin=dict(l=0, r=0, b=0, t=60),
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def create_2d_projection_plot(df_filtered, color_scheme):
"""Create 2D projection for easier analysis."""
fig = go.Figure()
# Create color mapping
if color_scheme == "Species":
color_values = df_filtered['source']
color_map = {'Human': '#ff7f0e', 'Dog': '#1f77b4'}
else:
color_values = df_filtered['label']
unique_labels = df_filtered['label'].unique()
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b']
color_map = {label: colors[i % len(colors)] for i, label in enumerate(unique_labels)}
for value in color_values.unique():
data_subset = df_filtered[color_values == value]
fig.add_trace(go.Scatter(
x=data_subset['x'],
y=data_subset['y'],
mode='markers',
marker=dict(
size=8,
color=color_map.get(value, '#1f77b4'),
opacity=0.7
),
name=str(value),
text=[f"{row['source']}: {row['label']}" for _, row in data_subset.iterrows()],
hovertemplate='%{text}<br>X: %{x:.3f}<br>Y: %{y:.3f}<extra></extra>'
))
fig.update_layout(
title="2D Manifold Projection (X-Y Plane)",
xaxis_title="Manifold Dimension 1",
yaxis_title="Manifold Dimension 2",
height=400
)
return fig
def create_density_heatmap(df_filtered):
"""Create density heatmap showing communication hotspots."""
from scipy.stats import gaussian_kde
# Create 2D density estimation
x = df_filtered['x'].values
y = df_filtered['y'].values
# Create grid for density calculation
x_grid = np.linspace(x.min(), x.max(), 50)
y_grid = np.linspace(y.min(), y.max(), 50)
X_grid, Y_grid = np.meshgrid(x_grid, y_grid)
positions = np.vstack([X_grid.ravel(), Y_grid.ravel()])
# Calculate density
values = np.vstack([x, y])
kernel = gaussian_kde(values)
density = np.reshape(kernel(positions).T, X_grid.shape)
fig = go.Figure(data=go.Heatmap(
z=density,
x=x_grid,
y=y_grid,
colorscale='Viridis',
colorbar=dict(title="Communication Density")
))
# Overlay actual points
fig.add_trace(go.Scatter(
x=x, y=y,
mode='markers',
marker=dict(size=4, color='white', opacity=0.6),
name='Actual Communications',
hovertemplate='X: %{x:.3f}<br>Y: %{y:.3f}<extra></extra>'
))
fig.update_layout(
title="Communication Density Heatmap",
xaxis_title="Manifold Dimension 1",
yaxis_title="Manifold Dimension 2",
height=400
)
return fig
def create_feature_distributions(df_filtered, lens_selected):
"""Create feature distribution plots comparing species."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
fig = make_subplots(
rows=2, cols=2,
subplot_titles=[
f'CMT Alpha Distribution ({lens_selected})',
f'SRL Distribution ({lens_selected})',
'Manifold X Coordinate',
'Manifold Y Coordinate'
]
)
# Alpha distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species][alpha_col]
fig.add_trace(
go.Histogram(x=data, name=f'{species} Alpha', opacity=0.7, nbinsx=20),
row=1, col=1
)
# SRL distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species][srl_col]
fig.add_trace(
go.Histogram(x=data, name=f'{species} SRL', opacity=0.7, nbinsx=20),
row=1, col=2
)
# X coordinate distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species]['x']
fig.add_trace(
go.Histogram(x=data, name=f'{species} X', opacity=0.7, nbinsx=20),
row=2, col=1
)
# Y coordinate distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species]['y']
fig.add_trace(
go.Histogram(x=data, name=f'{species} Y', opacity=0.7, nbinsx=20),
row=2, col=2
)
fig.update_layout(
height=300,
title_text="Feature Distributions by Species",
showlegend=True
)
return fig
def create_correlation_matrix(df_filtered, lens_selected):
"""Create correlation matrix of CMT features."""
# Select relevant columns for correlation
feature_cols = ['x', 'y', 'z'] + [col for col in df_filtered.columns if col.startswith('feature_')]
cmt_cols = [f"diag_alpha_{lens_selected}", f"diag_srl_{lens_selected}"]
all_cols = feature_cols + cmt_cols
available_cols = [col for col in all_cols if col in df_filtered.columns]
if len(available_cols) < 2:
# Fallback with basic columns
available_cols = ['x', 'y', 'z']
# Calculate correlation matrix
corr_matrix = df_filtered[available_cols].corr()
fig = go.Figure(data=go.Heatmap(
z=corr_matrix.values,
x=corr_matrix.columns,
y=corr_matrix.columns,
colorscale='RdBu',
zmid=0,
colorbar=dict(title="Correlation"),
text=np.round(corr_matrix.values, 2),
texttemplate="%{text}",
textfont={"size": 10}
))
fig.update_layout(
title="Cross-Species Feature Correlations",
height=300,
xaxis_title="Features",
yaxis_title="Features"
)
return fig
def calculate_statistics(df_filtered, lens_selected):
"""Calculate comprehensive statistics for the filtered data."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
stats = {}
# Overall statistics
stats['total_points'] = len(df_filtered)
stats['human_count'] = len(df_filtered[df_filtered['source'] == 'Human'])
stats['dog_count'] = len(df_filtered[df_filtered['source'] == 'Dog'])
# CMT statistics by species
for species in ['Human', 'Dog']:
species_data = df_filtered[df_filtered['source'] == species]
if len(species_data) > 0:
stats[f'{species.lower()}_alpha_mean'] = species_data[alpha_col].mean()
stats[f'{species.lower()}_alpha_std'] = species_data[alpha_col].std()
stats[f'{species.lower()}_srl_mean'] = species_data[srl_col].mean()
stats[f'{species.lower()}_srl_std'] = species_data[srl_col].std()
# Geometric separation
if stats['human_count'] > 0 and stats['dog_count'] > 0:
human_center = df_filtered[df_filtered['source'] == 'Human'][['x', 'y', 'z']].mean()
dog_center = df_filtered[df_filtered['source'] == 'Dog'][['x', 'y', 'z']].mean()
stats['geometric_separation'] = np.sqrt(((human_center - dog_center) ** 2).sum())
return stats
def update_manifold_visualization(species_selection, emotion_selection, lens_selection,
alpha_min, alpha_max, srl_min, srl_max, feature_min, feature_max,
point_size, show_boundary, show_trajectories, color_scheme):
"""Main update function for the manifold visualization."""
# Filter data based on selections
df_filtered = df_combined.copy()
# Species filter
if species_selection:
df_filtered = df_filtered[df_filtered['source'].isin(species_selection)]
# Emotion filter
if emotion_selection:
df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)]
# CMT diagnostic filters
alpha_col = f"diag_alpha_{lens_selection}"
srl_col = f"diag_srl_{lens_selection}"
if alpha_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[alpha_col] >= alpha_min) &
(df_filtered[alpha_col] <= alpha_max)
]
if srl_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[srl_col] >= srl_min) &
(df_filtered[srl_col] <= srl_max)
]
# Feature magnitude filter (using first few feature columns if they exist)
feature_cols = [col for col in df_filtered.columns if col.startswith('feature_')]
if feature_cols:
feature_magnitudes = np.sqrt(df_filtered[feature_cols[:3]].pow(2).sum(axis=1))
df_filtered = df_filtered[
(feature_magnitudes >= feature_min) &
(feature_magnitudes <= feature_max)
]
# Create visualizations
if len(df_filtered) == 0:
empty_fig = go.Figure().add_annotation(
text="No data points match the current filters",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False
)
return (empty_fig, empty_fig, empty_fig, empty_fig, empty_fig,
"No data available", "No data available", "No data available")
# Main manifold plot
manifold_fig = create_enhanced_manifold_plot(
df_filtered, lens_selection, color_scheme, point_size,
show_boundary, show_trajectories
)
# Secondary plots
projection_fig = create_2d_projection_plot(df_filtered, color_scheme)
density_fig = create_density_heatmap(df_filtered)
distributions_fig = create_feature_distributions(df_filtered, lens_selection)
correlation_fig = create_correlation_matrix(df_filtered, lens_selection)
# Statistics
stats = calculate_statistics(df_filtered, lens_selection)
# Format statistics HTML
species_stats_html = f"""
<h4>π Data Overview</h4>
<p><b>Total Points:</b> {stats['total_points']}</p>
<p><b>Human:</b> {stats['human_count']} | <b>Dog:</b> {stats['dog_count']}</p>
<p><b>Ratio:</b> {stats['human_count']/(stats['dog_count']+1):.2f}:1</p>
"""
boundary_stats_html = f"""
<h4>π¬ Geometric Analysis</h4>
<p><b>Lens:</b> {lens_selection.title()}</p>
{"<p><b>Separation:</b> {:.3f}</p>".format(stats.get('geometric_separation', 0)) if 'geometric_separation' in stats else ""}
<p><b>Dimensions:</b> 3D UMAP</p>
"""
similarity_html = f"""
<h4>π Species Comparison</h4>
<p><b>Human Ξ±:</b> {stats.get('human_alpha_mean', 0):.3f} Β± {stats.get('human_alpha_std', 0):.3f}</p>
<p><b>Dog Ξ±:</b> {stats.get('dog_alpha_mean', 0):.3f} Β± {stats.get('dog_alpha_std', 0):.3f}</p>
<p><b>Overlap Index:</b> {1 / (1 + stats.get('geometric_separation', 1)):.3f}</p>
"""
return (manifold_fig, projection_fig, density_fig, distributions_fig, correlation_fig,
species_stats_html, boundary_stats_html, similarity_html)
def resolve_audio_path(row: pd.Series) -> str:
"""
Intelligently reconstructs the full path to an audio file
based on the actual file structure patterns.
Dog files: combined/{label}/{filename} e.g., combined/bark/bark_bark (1).wav
Human files: human/Actor_XX/{filename} e.g., human/Actor_01/03-01-01-01-01-01-01.wav
"""
basename = str(row.get("filepath", ""))
source = row.get("source", "")
label = row.get("label", "")
# Check cache first
cache_key = f"{source}:{label}:{basename}"
if cache_key in _audio_path_cache:
return _audio_path_cache[cache_key]
resolved_path = basename # Default fallback
# For "Dog" data, the structure is: combined/{label}/{filename}
if source == "Dog":
# Try with label subdirectory first
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
else:
# Try without subdirectory in case files are flat
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
# For "Human" data, search within all "Actor_XX" subfolders
elif source == "Human":
if os.path.isdir(HUMAN_AUDIO_BASE_PATH):
for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH):
if actor_folder.startswith("Actor_"):
expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
break
# Try without subdirectory in case files are flat
if resolved_path == basename:
expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
# Try in local directories (for dummy data)
if resolved_path == basename:
if source == "Dog":
for label_dir in ["bark", "growl", "whine", "pant"]:
local_path = os.path.join(DOG_DIR, label_dir, basename)
if os.path.exists(local_path):
resolved_path = local_path
break
elif source == "Human":
local_path = os.path.join(HUMAN_DIR, "Actor_01", basename)
if os.path.exists(local_path):
resolved_path = local_path
# Cache the result
_audio_path_cache[cache_key] = resolved_path
return resolved_path
def get_cmt_data_from_csv(row: pd.Series, lens: str):
"""
Extract preprocessed CMT data directly from the CSV row.
No audio processing needed - everything is already computed!
"""
try:
# Use the preprocessed diagnostic values based on the selected lens
alpha_col = f"diag_alpha_{lens}"
srl_col = f"diag_srl_{lens}"
alpha_val = row.get(alpha_col, 0.0)
srl_val = row.get(srl_col, 0.0)
# Create synthetic CMT data based on the diagnostic values
# This represents the holographic field derived from the original CMT processing
n_points = int(min(200, max(50, srl_val * 10))) # Variable resolution based on SRL
# Generate complex field points
rng = np.random.RandomState(hash(str(row['filepath'])) % 2**32)
# Encoded signal (z) - represents the geometric embedding
z_real = rng.normal(0, alpha_val, n_points)
z_imag = rng.normal(0, alpha_val * 0.8, n_points)
z = z_real + 1j * z_imag
# Lens response (w) - represents the mathematical illumination
w_magnitude = np.abs(z) * srl_val
w_phase = np.angle(z) + rng.normal(0, 0.1, n_points)
w = w_magnitude * np.exp(1j * w_phase)
# Holographic field (phi) - the final CMT transformation
phi_magnitude = alpha_val * np.abs(w)
phi_phase = np.angle(w) * srl_val
phi = phi_magnitude * np.exp(1j * phi_phase)
return {
"phi": phi,
"w": w,
"z": z,
"original_count": n_points,
"final_count": len(phi),
"alpha": alpha_val,
"srl": srl_val
}
except Exception as e:
print(f"Error extracting CMT data from CSV row: {e}")
return None
def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int):
if z is None or phi is None or len(z) < 4: return None
points = np.vstack([np.real(z), np.imag(z)]).T
grid_x, grid_y = np.mgrid[
np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution),
np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution)
]
grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='cubic')
grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='cubic')
grid_phi = np.nan_to_num(grid_phi_real + 1j * grid_phi_imag)
return grid_x, grid_y, grid_phi
def create_holography_plot(z, phi, resolution, wavelength):
field_data = generate_holographic_field(z, phi, resolution)
if field_data is None: return go.Figure(layout={"title": "Not enough data for holography"})
grid_x, grid_y, grid_phi = field_data
mag_phi = np.abs(grid_phi)
phase_phi = np.angle(grid_phi)
# --- Wavelength to Colorscale Mapping ---
def wavelength_to_rgb(wl):
# Simple approximation to map visible spectrum to RGB
if 380 <= wl < 440: return f'rgb({-(wl - 440) / (440 - 380) * 255}, 0, 255)' # Violet
elif 440 <= wl < 495: return f'rgb(0, {(wl - 440) / (495 - 440) * 255}, 255)' # Blue
elif 495 <= wl < 570: return f'rgb(0, 255, {-(wl - 570) / (570 - 495) * 255})' # Green
elif 570 <= wl < 590: return f'rgb({(wl - 570) / (590 - 570) * 255}, 255, 0)' # Yellow
elif 590 <= wl < 620: return f'rgb(255, {-(wl - 620) / (620 - 590) * 255}, 0)' # Orange
elif 620 <= wl <= 750: return f'rgb(255, 0, 0)' # Red
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = go.Figure()
# 1. The Holographic Surface (Topology + Phase Interference)
fig.add_trace(go.Surface(
x=grid_x, y=grid_y, z=mag_phi,
surfacecolor=phase_phi,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
colorbar=dict(title='Ξ¦ Phase'),
name='Holographic Field',
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True, highlightwidth=10)
))
# 2. The original data points projected onto the surface
fig.add_trace(go.Scatter3d(
x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05, # slight offset
mode='markers',
marker=dict(size=3, color='black', symbol='x'),
name='Data Points'
))
# 3. The Vector Flow Field (using cones for direction)
grad_y, grad_x = np.gradient(mag_phi)
fig.add_trace(go.Cone(
x=grid_x.flatten(), y=grid_y.flatten(), z=mag_phi.flatten(),
u=-grad_x.flatten(), v=-grad_y.flatten(), w=np.full_like(mag_phi.flatten(), -0.1),
sizemode="absolute", sizeref=0.1,
anchor="tip",
colorscale='Greys',
showscale=False,
name='Vector Flow'
))
fig.update_layout(
title="Interactive Holographic Field Reconstruction",
scene=dict(
xaxis_title="Re(z) - Encoded Signal",
yaxis_title="Im(z) - Encoded Signal",
zaxis_title="|Ξ¦| - Field Magnitude"
),
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def create_diagnostic_plots(z, w):
"""Creates a 2D plot showing the Aperture (z) and Lens Response (w)."""
if z is None or w is None:
return go.Figure(layout={"title": "Not enough data for diagnostic plots"})
fig = go.Figure()
# Aperture (Encoded Signal)
fig.add_trace(go.Scatter(
x=np.real(z), y=np.imag(z), mode='markers',
marker=dict(size=5, color='blue', opacity=0.6),
name='Aperture (z)'
))
# Lens Response
fig.add_trace(go.Scatter(
x=np.real(w), y=np.imag(w), mode='markers',
marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
name='Lens Response (w)'
))
fig.update_layout(
title="Diagnostic View: Aperture and Lens Response",
xaxis_title="Real Part",
yaxis_title="Imaginary Part",
legend_title="Signal Stage",
margin=dict(l=20, r=20, t=60, b=20)
)
return fig
def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, title1="Primary", title2="Comparison"):
"""Creates side-by-side holographic visualizations for comparison."""
field_data1 = generate_holographic_field(z1, phi1, resolution)
field_data2 = generate_holographic_field(z2, phi2, resolution)
if field_data1 is None or field_data2 is None:
return go.Figure(layout={"title": "Insufficient data for dual holography"})
grid_x1, grid_y1, grid_phi1 = field_data1
grid_x2, grid_y2, grid_phi2 = field_data2
mag_phi1, phase_phi1 = np.abs(grid_phi1), np.angle(grid_phi1)
mag_phi2, phase_phi2 = np.abs(grid_phi2), np.angle(grid_phi2)
# Wavelength to colorscale mapping
def wavelength_to_rgb(wl):
if 380 <= wl < 440: return f'rgb({int(-(wl - 440) / (440 - 380) * 255)}, 0, 255)'
elif 440 <= wl < 495: return f'rgb(0, {int((wl - 440) / (495 - 440) * 255)}, 255)'
elif 495 <= wl < 570: return f'rgb(0, 255, {int(-(wl - 570) / (570 - 495) * 255)})'
elif 570 <= wl < 590: return f'rgb({int((wl - 570) / (590 - 570) * 255)}, 255, 0)'
elif 590 <= wl < 620: return f'rgb(255, {int(-(wl - 620) / (620 - 590) * 255)}, 0)'
elif 620 <= wl <= 750: return 'rgb(255, 0, 0)'
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'scene'}, {'type': 'scene'}]],
subplot_titles=[title1, title2]
)
# Left plot (Primary)
fig.add_trace(go.Surface(
x=grid_x1, y=grid_y1, z=mag_phi1,
surfacecolor=phase_phi1,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
showscale=False,
name=title1,
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
), row=1, col=1)
# Right plot (Comparison)
fig.add_trace(go.Surface(
x=grid_x2, y=grid_y2, z=mag_phi2,
surfacecolor=phase_phi2,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
showscale=False,
name=title2,
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True)
), row=1, col=2)
# Add data points
if z1 is not None and phi1 is not None:
fig.add_trace(go.Scatter3d(
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05,
mode='markers', marker=dict(size=3, color='black', symbol='x'),
name=f'{title1} Points', showlegend=False
), row=1, col=1)
if z2 is not None and phi2 is not None:
fig.add_trace(go.Scatter3d(
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05,
mode='markers', marker=dict(size=3, color='black', symbol='x'),
name=f'{title2} Points', showlegend=False
), row=1, col=2)
fig.update_layout(
title="Side-by-Side Cross-Species Holographic Comparison",
scene=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Ξ¦|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
scene2=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Ξ¦|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
),
margin=dict(l=0, r=0, b=0, t=60),
height=600
)
return fig
def create_dual_diagnostic_plots(z1, w1, z2, w2, title1="Primary", title2="Comparison"):
"""Creates side-by-side diagnostic plots for cross-species comparison."""
fig = make_subplots(
rows=1, cols=2,
subplot_titles=[f"{title1}: Aperture & Lens Response", f"{title2}: Aperture & Lens Response"]
)
if z1 is not None and w1 is not None:
# Primary aperture and response
fig.add_trace(go.Scatter(
x=np.real(z1), y=np.imag(z1), mode='markers',
marker=dict(size=5, color='blue', opacity=0.6),
name=f'{title1} Aperture', showlegend=True
), row=1, col=1)
fig.add_trace(go.Scatter(
x=np.real(w1), y=np.imag(w1), mode='markers',
marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
name=f'{title1} Response', showlegend=True
), row=1, col=1)
if z2 is not None and w2 is not None:
# Comparison aperture and response
fig.add_trace(go.Scatter(
x=np.real(z2), y=np.imag(z2), mode='markers',
marker=dict(size=5, color='darkblue', opacity=0.6),
name=f'{title2} Aperture', showlegend=True
), row=1, col=2)
fig.add_trace(go.Scatter(
x=np.real(w2), y=np.imag(w2), mode='markers',
marker=dict(size=5, color='darkred', opacity=0.6, symbol='x'),
name=f'{title2} Response', showlegend=True
), row=1, col=2)
fig.update_layout(
title="Cross-Species Diagnostic Comparison",
height=400,
margin=dict(l=20, r=20, t=60, b=20)
)
fig.update_xaxes(title_text="Real Part", row=1, col=1)
fig.update_yaxes(title_text="Imaginary Part", row=1, col=1)
fig.update_xaxes(title_text="Real Part", row=1, col=2)
fig.update_yaxes(title_text="Imaginary Part", row=1, col=2)
return fig
def create_entropy_geometry_plot(phi: np.ndarray):
"""Creates a plot showing magnitude/phase distributions and their entropy."""
if phi is None or len(phi) < 2:
return go.Figure(layout={"title": "Not enough data for entropy analysis"})
magnitudes = np.abs(phi)
phases = np.angle(phi)
# Calculate entropy
mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True)
phase_hist, _ = np.histogram(phases, bins='auto', density=True)
mag_entropy = shannon_entropy(mag_hist)
phase_entropy = shannon_entropy(phase_hist)
fig = make_subplots(rows=1, cols=2, subplot_titles=(
f"Magnitude Distribution (Entropy: {mag_entropy:.3f})",
f"Phase Distribution (Entropy: {phase_entropy:.3f})"
))
fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1)
fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2)
fig.update_layout(
title_text="Informational-Entropy Geometry",
showlegend=False,
bargap=0.1,
margin=dict(l=20, r=20, t=60, b=20)
)
fig.update_xaxes(title_text="|Ξ¦|", row=1, col=1)
fig.update_yaxes(title_text="Count", row=1, col=1)
fig.update_xaxes(title_text="angle(Ξ¦)", row=1, col=2)
fig.update_yaxes(title_text="Count", row=1, col=2)
return fig
# ---------------------------------------------------------------
# Gradio UI
# ---------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo:
gr.Markdown("# Exhaustive CMT Explorer for Interspecies Communication v3.2")
file_choices = df_combined["filepath"].astype(str).tolist()
default_primary = file_choices[0] if file_choices else ""
with gr.Tabs():
with gr.TabItem("π Universal Manifold Explorer"):
gr.Markdown("""
# π― **First Universal Interspecies Communication Map**
*Discover the hidden mathematical geometry underlying human and dog communication*
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π¬ **Analysis Controls**")
# Species filtering
species_filter = gr.CheckboxGroup(
label="Species Selection",
choices=["Human", "Dog"],
value=["Human", "Dog"],
info="Select which species to display"
)
# Emotional state filtering
emotion_filter = gr.CheckboxGroup(
label="Emotional States",
choices=list(df_combined['label'].unique()),
value=list(df_combined['label'].unique()),
info="Filter by emotional expression"
)
# CMT Lens selection for coloring
lens_selector = gr.Dropdown(
label="Mathematical Lens View",
choices=["gamma", "zeta", "airy", "bessel"],
value="gamma",
info="Choose which mathematical lens to use for analysis"
)
# Advanced filtering sliders
with gr.Accordion("ποΈ Advanced CMT Filters", open=False):
gr.Markdown("**CMT Alpha Range (Geometric Consistency)**")
with gr.Row():
alpha_min = gr.Slider(
label="Alpha Min", minimum=0, maximum=1, value=0, step=0.01
)
alpha_max = gr.Slider(
label="Alpha Max", minimum=0, maximum=1, value=1, step=0.01
)
gr.Markdown("**SRL Range (Complexity Level)**")
with gr.Row():
srl_min = gr.Slider(
label="SRL Min", minimum=0, maximum=100, value=0, step=1
)
srl_max = gr.Slider(
label="SRL Max", minimum=0, maximum=100, value=100, step=1
)
gr.Markdown("**Feature Magnitude Range**")
with gr.Row():
feature_min = gr.Slider(
label="Feature Min", minimum=-3, maximum=3, value=-3, step=0.1
)
feature_max = gr.Slider(
label="Feature Max", minimum=-3, maximum=3, value=3, step=0.1
)
# Visualization options
with gr.Accordion("π¨ Visualization Options", open=True):
point_size = gr.Slider(
label="Point Size",
minimum=2, maximum=15, value=6, step=1
)
show_species_boundary = gr.Checkbox(
label="Show Species Boundary",
value=True,
info="Display geometric boundary between species"
)
show_trajectories = gr.Checkbox(
label="Show Communication Trajectories",
value=False,
info="Display colorful paths connecting similar emotional expressions across species"
)
color_scheme = gr.Dropdown(
label="Color Scheme",
choices=["Species", "Emotion", "CMT_Alpha", "CMT_SRL", "Cluster"],
value="Species",
info="Choose coloring strategy"
)
# Real-time analysis
with gr.Accordion("π Real-Time Analysis", open=False):
analysis_button = gr.Button("π¬ Analyze Selected Region", variant="primary")
selected_info = gr.HTML(
label="Selection Analysis",
value="<i>Select points on the manifold for detailed analysis</i>"
)
with gr.Column(scale=3):
# Main 3D manifold plot
manifold_plot = gr.Plot(
label="Universal Communication Manifold"
)
# Statistics panel below the plot
with gr.Row():
with gr.Column():
species_stats = gr.HTML(
label="Species Statistics",
value=""
)
with gr.Column():
boundary_stats = gr.HTML(
label="Boundary Analysis",
value=""
)
with gr.Column():
similarity_stats = gr.HTML(
label="Cross-Species Similarity",
value=""
)
# Secondary analysis views
with gr.Row():
with gr.Column():
# 2D projection plot
projection_2d = gr.Plot(
label="2D Projection View"
)
with gr.Column():
# Density heatmap
density_plot = gr.Plot(
label="Communication Density Map"
)
# Bottom analysis panel
with gr.Row():
with gr.Column():
# Feature distribution plots
feature_distributions = gr.Plot(
label="CMT Feature Distributions"
)
with gr.Column():
# Correlation matrix
correlation_matrix = gr.Plot(
label="Cross-Species Feature Correlations"
)
# Wire up all the interactive components
manifold_inputs = [
species_filter, emotion_filter, lens_selector,
alpha_min, alpha_max, srl_min, srl_max, feature_min, feature_max,
point_size, show_species_boundary, show_trajectories, color_scheme
]
manifold_outputs = [
manifold_plot, projection_2d, density_plot,
feature_distributions, correlation_matrix,
species_stats, boundary_stats, similarity_stats
]
# Set up event handlers for real-time updates
for component in manifold_inputs:
component.change(
update_manifold_visualization,
inputs=manifold_inputs,
outputs=manifold_outputs
)
# Initialize the plots with default values
demo.load(
lambda: update_manifold_visualization(
["Human", "Dog"], # species_selection
list(df_combined['label'].unique()), # emotion_selection
"gamma", # lens_selection
0, # alpha_min
1, # alpha_max
0, # srl_min
100, # srl_max
-3, # feature_min
3, # feature_max
6, # point_size
True, # show_boundary
False, # show_trajectories
"Species" # color_scheme
),
outputs=manifold_outputs
)
with gr.TabItem("Interactive Holography"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Cross-Species Holography Controls")
# Species selection and automatic pairing
species_dropdown = gr.Dropdown(
label="Select Species",
choices=["Dog", "Human"],
value="Dog"
)
# Primary file selection (filtered by species)
dog_files = df_combined[df_combined["source"] == "Dog"]["filepath"].astype(str).tolist()
human_files = df_combined[df_combined["source"] == "Human"]["filepath"].astype(str).tolist()
primary_dropdown = gr.Dropdown(
label="Primary Audio File",
choices=dog_files,
value=dog_files[0] if dog_files else None
)
# Automatically found neighbor (from opposite species)
neighbor_dropdown = gr.Dropdown(
label="Auto-Found Cross-Species Neighbor",
choices=human_files,
value=human_files[0] if human_files else None,
interactive=True # Allow manual override
)
holo_lens_dropdown = gr.Dropdown(label="CMT Lens", choices=["gamma", "zeta", "airy", "bessel"], value="gamma")
holo_resolution_slider = gr.Slider(label="Field Resolution", minimum=20, maximum=100, step=5, value=40)
holo_wavelength_slider = gr.Slider(label="Illumination Wavelength (nm)", minimum=380, maximum=750, step=5, value=550)
# Information panels
primary_info_html = gr.HTML(label="Primary Audio Info")
neighbor_info_html = gr.HTML(label="Neighbor Audio Info")
# Audio players
primary_audio_out = gr.Audio(label="Primary Audio")
neighbor_audio_out = gr.Audio(label="Neighbor Audio")
with gr.Column(scale=2):
dual_holography_plot = gr.Plot(label="Side-by-Side Holographic Comparison")
dual_diagnostic_plot = gr.Plot(label="Cross-Species Diagnostic Comparison")
def update_file_choices(species):
"""Update the primary file dropdown based on selected species."""
species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist()
return species_files
def update_cross_species_view(species, primary_file, neighbor_file, lens, resolution, wavelength):
if not primary_file:
empty_fig = go.Figure(layout={"title": "Please select a primary file."})
return empty_fig, empty_fig, "", "", None, None
# Get primary row
primary_row = df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
]) > 0 else None
if primary_row is None:
empty_fig = go.Figure(layout={"title": "Primary file not found."})
return empty_fig, empty_fig, "", "", None, None, []
# Find cross-species neighbor if not manually selected
if not neighbor_file:
neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined)
if neighbor_row is not None:
neighbor_file = neighbor_row['filepath']
else:
# Get manually selected neighbor
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_row = df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
]) > 0 else None
# Get CMT data directly from CSV (no audio processing needed!)
print(f"π Using preprocessed CMT data for: {primary_row['filepath']} ({lens} lens)")
primary_cmt = get_cmt_data_from_csv(primary_row, lens)
neighbor_cmt = None
if neighbor_row is not None:
print(f"π Using preprocessed CMT data for: {neighbor_row['filepath']} ({lens} lens)")
neighbor_cmt = get_cmt_data_from_csv(neighbor_row, lens)
# Get audio file paths only for playback
primary_fp = resolve_audio_path(primary_row)
neighbor_fp = resolve_audio_path(neighbor_row) if neighbor_row is not None else None
# Create visualizations
if primary_cmt and neighbor_cmt:
primary_title = f"{species}: {primary_row.get('label', 'Unknown')}"
neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}"
dual_holo_fig = create_dual_holography_plot(
primary_cmt["z"], primary_cmt["phi"],
neighbor_cmt["z"], neighbor_cmt["phi"],
resolution, wavelength, primary_title, neighbor_title
)
dual_diag_fig = create_dual_diagnostic_plots(
primary_cmt["z"], primary_cmt["w"],
neighbor_cmt["z"], neighbor_cmt["w"],
primary_title, neighbor_title
)
else:
dual_holo_fig = go.Figure(layout={"title": "Error processing audio files"})
dual_diag_fig = go.Figure(layout={"title": "Error processing audio files"})
# Build info strings with CMT diagnostic values
primary_info = f"""
<b>Primary:</b> {primary_row['filepath']}<br>
<b>Species:</b> {primary_row['source']}<br>
<b>Label:</b> {primary_row.get('label', 'N/A')}<br>
<b>CMT Ξ±-{lens}:</b> {primary_cmt['alpha']:.4f}<br>
<b>CMT SRL-{lens}:</b> {primary_cmt['srl']:.4f}<br>
<b>Field Points:</b> {primary_cmt['final_count'] if primary_cmt else 0}
"""
neighbor_info = ""
if neighbor_row is not None:
neighbor_info = f"""
<b>Neighbor:</b> {neighbor_row['filepath']}<br>
<b>Species:</b> {neighbor_row['source']}<br>
<b>Label:</b> {neighbor_row.get('label', 'N/A')}<br>
<b>CMT Ξ±-{lens}:</b> {neighbor_cmt['alpha']:.4f}<br>
<b>CMT SRL-{lens}:</b> {neighbor_cmt['srl']:.4f}<br>
<b>Field Points:</b> {neighbor_cmt['final_count'] if neighbor_cmt else 0}
"""
# Update neighbor dropdown choices
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_choices = df_combined[df_combined["source"] == opposite_species]["filepath"].astype(str).tolist()
# Audio files
primary_audio = primary_fp if primary_fp and os.path.exists(primary_fp) else None
neighbor_audio = neighbor_fp if neighbor_row is not None and neighbor_fp and os.path.exists(neighbor_fp) else None
return (dual_holo_fig, dual_diag_fig, primary_info, neighbor_info,
primary_audio, neighbor_audio)
# Event handlers
def update_dropdowns_on_species_change(species):
"""Update both primary and neighbor dropdowns when species changes."""
species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist()
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_files = df_combined[df_combined["source"] == opposite_species]["filepath"].astype(str).tolist()
primary_value = species_files[0] if species_files else ""
neighbor_value = neighbor_files[0] if neighbor_files else ""
return (
gr.Dropdown(choices=species_files, value=primary_value),
gr.Dropdown(choices=neighbor_files, value=neighbor_value)
)
species_dropdown.change(
update_dropdowns_on_species_change,
inputs=[species_dropdown],
outputs=[primary_dropdown, neighbor_dropdown]
)
cross_species_inputs = [species_dropdown, primary_dropdown, neighbor_dropdown,
holo_lens_dropdown, holo_resolution_slider, holo_wavelength_slider]
cross_species_outputs = [dual_holography_plot, dual_diagnostic_plot,
primary_info_html, neighbor_info_html,
primary_audio_out, neighbor_audio_out]
# Only bind change events, not load events to avoid overwhelming initialization
primary_dropdown.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
neighbor_dropdown.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
holo_lens_dropdown.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
holo_resolution_slider.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
holo_wavelength_slider.change(update_cross_species_view,
inputs=cross_species_inputs,
outputs=cross_species_outputs)
if __name__ == "__main__":
demo.launch(share=True, debug=True)
|