CMT-Mapping / app.py
Severian's picture
Update app.py
9dbdd98 verified
raw
history blame
107 kB
import os
import warnings
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from umap import UMAP
from sklearn.cluster import KMeans
from scipy.stats import entropy as shannon_entropy
from scipy import special as sp_special
from scipy.interpolate import griddata
from sklearn.metrics.pairwise import cosine_similarity
from scipy.spatial.distance import cdist
import soundfile as sf
import gradio as gr
# ================================================================
# Unified Communication Manifold Explorer & CMT Visualizer v4.0
# - Adds side-by-side comparison capabilities from HTML draft
# - Implements cross-species neighbor finding for grammar mapping
# - Separates human and dog audio with automatic pairing
# - Enhanced dual visualization for comparative analysis
# ================================================================
# - Adds Interactive Holography tab for full field reconstruction.
# - Interpolates the continuous CMT state-space (Φ field).
# - Visualizes topology, vector flow, and phase interference.
# - Adds informational-entropy-geometry visualization.
# - Prioritizes specific Colab paths for data loading.
# ================================================================
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
print("Initializing the Interactive CMT Holography Explorer...")
# ---------------------------------------------------------------
# Data setup
# ---------------------------------------------------------------
# Paths for local execution (used for dummy data generation fallback)
BASE_DIR = os.path.abspath(os.getcwd())
DATA_DIR = os.path.join(BASE_DIR, "data")
DOG_DIR = os.path.join(DATA_DIR, "dog")
HUMAN_DIR = os.path.join(DATA_DIR, "human")
# Paths for different deployment environments
# Priority order: 1) Hugging Face Spaces (repo root), 2) Colab, 3) Local
HF_CSV_DOG = "cmt_dog_sound_analysis.csv"
HF_CSV_HUMAN = "cmt_human_speech_analysis.csv"
COLAB_CSV_DOG = "/content/cmt_dog_sound_analysis.csv"
COLAB_CSV_HUMAN = "/content/cmt_human_speech_analysis.csv"
# Determine which environment we're in and set paths accordingly
if os.path.exists(HF_CSV_DOG) and os.path.exists(HF_CSV_HUMAN):
# Hugging Face Spaces - files in repo root
CSV_DOG = HF_CSV_DOG
CSV_HUMAN = HF_CSV_HUMAN
print("Using Hugging Face Spaces paths")
elif os.path.exists(COLAB_CSV_DOG) and os.path.exists(COLAB_CSV_HUMAN):
# Google Colab environment
CSV_DOG = COLAB_CSV_DOG
CSV_HUMAN = COLAB_CSV_HUMAN
print("Using Google Colab paths")
else:
# Fallback to local or will trigger dummy data
CSV_DOG = HF_CSV_DOG # Try repo root first
CSV_HUMAN = HF_CSV_HUMAN
print("Falling back to local/dummy data paths")
# These are for creating dummy audio files if needed
os.makedirs(DOG_DIR, exist_ok=True)
os.makedirs(os.path.join(HUMAN_DIR, "Actor_01"), exist_ok=True)
# --- Audio Data Configuration (Platform-aware paths) ---
# For Hugging Face Spaces, audio files might be in the repo or need different handling
# For Colab, they're in Google Drive
if os.path.exists("/content/drive/MyDrive/combined"):
# Google Colab with mounted Drive
DOG_AUDIO_BASE_PATH = '/content/drive/MyDrive/combined'
HUMAN_AUDIO_BASE_PATH = '/content/drive/MyDrive/human'
print("Using Google Drive audio paths")
elif os.path.exists("combined") and os.path.exists("human"):
# Hugging Face Spaces with audio in repo root
DOG_AUDIO_BASE_PATH = 'combined'
HUMAN_AUDIO_BASE_PATH = 'human'
print("Using Hugging Face Spaces audio paths (repo root)")
elif os.path.exists("audio/combined"):
# Alternative Hugging Face Spaces location
DOG_AUDIO_BASE_PATH = 'audio/combined'
HUMAN_AUDIO_BASE_PATH = 'audio/human'
print("Using Hugging Face Spaces audio paths (audio subdir)")
else:
# Fallback to local dummy paths
DOG_AUDIO_BASE_PATH = DOG_DIR
HUMAN_AUDIO_BASE_PATH = HUMAN_DIR
print("Using local dummy audio paths")
print(f"Audio base paths configured:")
print(f"- Dog audio base: {DOG_AUDIO_BASE_PATH}")
print(f"- Human audio base: {HUMAN_AUDIO_BASE_PATH}")
# ---------------------------------------------------------------
# Cross-Species Analysis Functions
# ---------------------------------------------------------------
def find_nearest_cross_species_neighbor(selected_row, df_combined, n_neighbors=5):
"""
Finds the closest neighbor from the opposite species using feature similarity.
This enables cross-species pattern mapping for grammar development.
"""
selected_source = selected_row['source']
opposite_source = 'Human' if selected_source == 'Dog' else 'Dog'
# Get feature columns for similarity calculation
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
if not feature_cols:
# Fallback to any numeric columns if no feature columns exist
numeric_cols = df_combined.select_dtypes(include=[np.number]).columns
feature_cols = [c for c in numeric_cols if c not in ['x', 'y', 'z', 'cluster']]
if not feature_cols:
# Random selection if no suitable features found
opposite_species_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_species_data) > 0:
return opposite_species_data.iloc[0]
return None
# Extract features for the selected row
selected_features = selected_row[feature_cols].values.reshape(1, -1)
selected_features = np.nan_to_num(selected_features)
# Get all rows from the opposite species
opposite_species_data = df_combined[df_combined['source'] == opposite_source]
if len(opposite_species_data) == 0:
return None
# Extract features for opposite species
opposite_features = opposite_species_data[feature_cols].values
opposite_features = np.nan_to_num(opposite_features)
# Calculate cosine similarity (better for high-dimensional feature spaces)
similarities = cosine_similarity(selected_features, opposite_features)[0]
# Find the index of the most similar neighbor
most_similar_idx = np.argmax(similarities)
nearest_neighbor = opposite_species_data.iloc[most_similar_idx]
return nearest_neighbor
# ---------------------------------------------------------------
# Load datasets (Colab-first paths)
# ---------------------------------------------------------------
# Debug: Show what files we're looking for and what exists
print(f"Looking for CSV files:")
print(f"- Dog CSV: {CSV_DOG} (exists: {os.path.exists(CSV_DOG)})")
print(f"- Human CSV: {CSV_HUMAN} (exists: {os.path.exists(CSV_HUMAN)})")
print(f"Current working directory: {os.getcwd()}")
print(f"Files in current directory: {os.listdir('.')}")
if os.path.exists(CSV_DOG) and os.path.exists(CSV_HUMAN):
print(f"✅ Found existing data files. Loading from:\n- {CSV_DOG}\n- {CSV_HUMAN}")
df_dog = pd.read_csv(CSV_DOG)
df_human = pd.read_csv(CSV_HUMAN)
print(f"Successfully loaded data: {len(df_dog)} dog rows, {len(df_human)} human rows")
else:
print("❌ Could not find one or both CSV files. Generating and using in-memory dummy data.")
# This section is for DUMMY DATA GENERATION ONLY.
# It runs if the primary CSVs are not found and does NOT write files.
n_dummy_items_per_category = 50
rng = np.random.default_rng(42)
# Ensure labels match the exact number of items
base_dog_labels = ["bark", "growl", "whine", "pant"]
base_human_labels = ["speech", "laugh", "cry", "shout"]
dog_labels = [base_dog_labels[i % len(base_dog_labels)] for i in range(n_dummy_items_per_category)]
human_labels = [base_human_labels[i % len(base_human_labels)] for i in range(n_dummy_items_per_category)]
dog_rows = {
"feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
"label": dog_labels, "filepath": [f"dog_{i}.wav" for i in range(n_dummy_items_per_category)],
"diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
"zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
}
human_rows = {
"feature_1": rng.random(n_dummy_items_per_category), "feature_2": rng.random(n_dummy_items_per_category), "feature_3": rng.random(n_dummy_items_per_category),
"label": human_labels, "filepath": [f"human_{i}.wav" for i in range(n_dummy_items_per_category)],
"diag_srl_gamma": rng.uniform(0.5, 5.0, n_dummy_items_per_category), "diag_alpha_gamma": rng.uniform(0.1, 2.0, n_dummy_items_per_category),
"zeta_curvature": rng.uniform(-1, 1, n_dummy_items_per_category), "torsion_index": rng.uniform(0, 1, n_dummy_items_per_category),
}
df_dog = pd.DataFrame(dog_rows)
df_human = pd.DataFrame(human_rows)
# We still create dummy audio files for the UI to use if needed
sr = 22050
dur = 2.0
t = np.linspace(0, dur, int(sr * dur), endpoint=False)
for i in range(n_dummy_items_per_category):
tone_freq = 220 + 20 * (i % 5)
audio = 0.1 * np.sin(2 * np.pi * tone_freq * t) + 0.02 * rng.standard_normal(t.shape)
audio = audio / (np.max(np.abs(audio)) + 1e-9)
dog_label = dog_labels[i]
dog_label_dir = os.path.join(DOG_DIR, dog_label)
os.makedirs(dog_label_dir, exist_ok=True)
sf.write(os.path.join(dog_label_dir, f"dog_{i}.wav"), audio, sr)
sf.write(os.path.join(HUMAN_DIR, "Actor_01", f"human_{i}.wav"), audio, sr)
print(f"Loaded {len(df_dog)} dog rows and {len(df_human)} human rows.")
df_dog["source"], df_human["source"] = "Dog", "Human"
df_combined = pd.concat([df_dog, df_human], ignore_index=True)
# ---------------------------------------------------------------
# Expanded CMT implementation
# ---------------------------------------------------------------
class ExpandedCMT:
def __init__(self):
self.c1, self.c2 = 0.587 + 1.223j, -0.994 + 0.0j
# A large but finite number to represent the pole at z=1 for Zeta
self.ZETA_POLE_REGULARIZATION = 1e6 - 1e6j
self.lens_library = {
"gamma": sp_special.gamma,
"zeta": self._regularized_zeta, # Use the robust zeta function
"airy": lambda z: sp_special.airy(z)[0],
"bessel": lambda z: sp_special.jv(0, z),
}
def _regularized_zeta(self, z: np.ndarray) -> np.ndarray:
"""
A wrapper around scipy's zeta function to handle the pole at z=1.
"""
# Create a copy to avoid modifying the original array
z_out = np.copy(z).astype(np.complex128)
# Find where the real part is close to 1 and the imaginary part is close to 0
pole_condition = np.isclose(np.real(z), 1.0) & np.isclose(np.imag(z), 0.0)
# Apply the standard zeta function to non-pole points
non_pole_points = ~pole_condition
z_out[non_pole_points] = sp_special.zeta(z[non_pole_points], 1)
# Apply the regularization constant to the pole points
z_out[pole_condition] = self.ZETA_POLE_REGULARIZATION
return z_out
def _robust_normalize(self, signal: np.ndarray) -> np.ndarray:
if signal.size == 0: return signal
Q1, Q3 = np.percentile(signal, [25, 75])
IQR = Q3 - Q1
if IQR < 1e-9:
median, mad = np.median(signal), np.median(np.abs(signal - np.median(signal)))
return np.zeros_like(signal) if mad < 1e-9 else (signal - median) / (mad + 1e-9)
lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
clipped = np.clip(signal, lower, upper)
s_min, s_max = np.min(clipped), np.max(clipped)
return np.zeros_like(signal) if s_max == s_min else 2.0 * (clipped - s_min) / (s_max - s_min) - 1.0
def _encode(self, signal: np.ndarray) -> np.ndarray:
N = len(signal)
if N == 0: return signal.astype(np.complex128)
i = np.arange(N)
theta = 2.0 * np.pi * i / N
f_k, A_k = np.array([271, 341, 491]), np.array([0.033, 0.050, 0.100])
phi = np.sum(A_k[:, None] * np.sin(2.0 * np.pi * f_k[:, None] * i / N), axis=0)
Theta = theta + phi
exp_iTheta = np.exp(1j * Theta)
g, m = signal * exp_iTheta, np.abs(signal) * exp_iTheta
return 0.5 * g + 0.5 * m
def _apply_lens(self, encoded_signal: np.ndarray, lens_type: str):
lens_fn = self.lens_library.get(lens_type)
if not lens_fn: raise ValueError(f"Lens '{lens_type}' not found.")
with np.errstate(all="ignore"):
w = lens_fn(encoded_signal)
phi_trajectory = self.c1 * np.angle(w) + self.c2 * np.abs(encoded_signal)
finite_mask = np.isfinite(phi_trajectory)
return phi_trajectory[finite_mask], w[finite_mask], encoded_signal[finite_mask], len(encoded_signal), len(phi_trajectory[finite_mask])
# ---------------------------------------------------------------
# Feature preparation and UMAP embedding
# ---------------------------------------------------------------
feature_cols = [c for c in df_combined.columns if c.startswith("feature_")]
features = np.nan_to_num(df_combined[feature_cols].to_numpy())
reducer = UMAP(n_components=3, n_neighbors=15, min_dist=0.1, random_state=42)
df_combined[["x", "y", "z"]] = reducer.fit_transform(features)
kmeans = KMeans(n_clusters=max(4, min(12, int(np.sqrt(len(df_combined))))), random_state=42, n_init=10)
df_combined["cluster"] = kmeans.fit_predict(features)
df_combined["chaos_score"] = np.log1p(df_combined.get("diag_srl_gamma", 0)) / (df_combined.get("diag_alpha_gamma", 1) + 1e-2)
# ---------------------------------------------------------------
# Core Visualization and Analysis Functions
# ---------------------------------------------------------------
# Cache for resolved audio paths and CMT data to avoid repeated computations
_audio_path_cache = {}
_cmt_data_cache = {}
# Advanced manifold analysis functions
def calculate_species_boundary(df_combined):
"""Calculate the geometric boundary between species using support vector machines."""
from sklearn.svm import SVC
# Prepare data for boundary calculation
human_data = df_combined[df_combined['source'] == 'Human'][['x', 'y', 'z']].values
dog_data = df_combined[df_combined['source'] == 'Dog'][['x', 'y', 'z']].values
# Create binary classification data
X = np.vstack([human_data, dog_data])
y = np.hstack([np.ones(len(human_data)), np.zeros(len(dog_data))])
# Fit SVM for boundary
svm = SVC(kernel='rbf', probability=True)
svm.fit(X, y)
# Create boundary surface
x_range = np.linspace(X[:, 0].min(), X[:, 0].max(), 20)
y_range = np.linspace(X[:, 1].min(), X[:, 1].max(), 20)
z_range = np.linspace(X[:, 2].min(), X[:, 2].max(), 20)
xx, yy = np.meshgrid(x_range, y_range)
boundary_points = []
for z_val in z_range:
grid_points = np.c_[xx.ravel(), yy.ravel(), np.full(xx.ravel().shape, z_val)]
probabilities = svm.predict_proba(grid_points)[:, 1]
# Find points near decision boundary (probability ~ 0.5)
boundary_mask = np.abs(probabilities - 0.5) < 0.05
if np.any(boundary_mask):
boundary_points.extend(grid_points[boundary_mask])
return np.array(boundary_points) if boundary_points else None
def create_enhanced_manifold_plot(df_filtered, lens_selected, color_scheme, point_size,
show_boundary, show_trajectories):
"""Create the main 3D manifold visualization with all advanced features."""
# Get CMT diagnostic values for the selected lens
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
# Determine color values based on scheme
if color_scheme == "Species":
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']]
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']] # Blue for Dog, Orange for Human
colorbar_title = "Species (Blue=Dog, Orange=Human)"
elif color_scheme == "Emotion":
unique_emotions = df_filtered['label'].unique()
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)}
color_values = [emotion_map[label] for label in df_filtered['label']]
colorscale = 'Viridis'
colorbar_title = "Emotional State"
elif color_scheme == "CMT_Alpha":
color_values = df_filtered[alpha_col].values
colorscale = 'Plasma'
colorbar_title = f"CMT Alpha ({lens_selected})"
elif color_scheme == "CMT_SRL":
color_values = df_filtered[srl_col].values
colorscale = 'Turbo'
colorbar_title = f"SRL Complexity ({lens_selected})"
else: # Cluster
color_values = df_filtered['cluster'].values
colorscale = 'Plotly3'
colorbar_title = "Cluster ID"
# Create hover text with rich information
hover_text = []
for _, row in df_filtered.iterrows():
hover_info = f"""
<b>{row['source']}</b>: {row['label']}<br>
File: {row['filepath']}<br>
<b>CMT Diagnostics ({lens_selected}):</b><br>
α: {row[alpha_col]:.4f}<br>
SRL: {row[srl_col]:.4f}<br>
Coordinates: ({row['x']:.3f}, {row['y']:.3f}, {row['z']:.3f})
"""
hover_text.append(hover_info)
# Create main scatter plot
fig = go.Figure()
# Add main data points
fig.add_trace(go.Scatter3d(
x=df_filtered['x'],
y=df_filtered['y'],
z=df_filtered['z'],
mode='markers',
marker=dict(
size=point_size,
color=color_values,
colorscale=colorscale,
showscale=True,
colorbar=dict(title=colorbar_title),
opacity=0.8,
line=dict(width=0.5, color='rgba(50,50,50,0.5)')
),
text=hover_text,
hovertemplate='%{text}<extra></extra>',
name='Communications'
))
# Add species boundary if requested
if show_boundary:
boundary_points = calculate_species_boundary(df_filtered)
if boundary_points is not None and len(boundary_points) > 0:
fig.add_trace(go.Scatter3d(
x=boundary_points[:, 0],
y=boundary_points[:, 1],
z=boundary_points[:, 2],
mode='markers',
marker=dict(
size=2,
color='red',
opacity=0.3
),
name='Species Boundary',
hovertemplate='Species Boundary<extra></extra>'
))
# Add trajectories if requested
if show_trajectories:
# Create colorful trajectories between similar emotional states
emotion_colors = {
'angry': '#FF4444',
'happy': '#44FF44',
'sad': '#4444FF',
'fearful': '#FF44FF',
'neutral': '#FFFF44',
'surprised': '#44FFFF',
'disgusted': '#FF8844',
'bark': '#FF6B35',
'growl': '#8B4513',
'whine': '#9370DB',
'pant': '#20B2AA',
'speech': '#1E90FF',
'laugh': '#FFD700',
'cry': '#4169E1',
'shout': '#DC143C'
}
for i, emotion in enumerate(df_filtered['label'].unique()):
emotion_data = df_filtered[df_filtered['label'] == emotion]
if len(emotion_data) > 1:
# Get color for this emotion, fallback to cycle through colors
base_colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7', '#DDA0DD', '#98D8C8', '#F7DC6F']
emotion_color = emotion_colors.get(emotion.lower(), base_colors[i % len(base_colors)])
# Create trajectories connecting points of same emotional state
x_coords = emotion_data['x'].values
y_coords = emotion_data['y'].values
z_coords = emotion_data['z'].values
# Sort by one dimension to create smoother trajectories
sort_indices = np.argsort(x_coords)
x_sorted = x_coords[sort_indices]
y_sorted = y_coords[sort_indices]
z_sorted = z_coords[sort_indices]
fig.add_trace(go.Scatter3d(
x=x_sorted,
y=y_sorted,
z=z_sorted,
mode='lines+markers',
line=dict(
width=4,
color=emotion_color,
dash='dash'
),
marker=dict(
size=3,
color=emotion_color,
opacity=0.8
),
name=f'{emotion.title()} Path',
showlegend=True,
hovertemplate=f'<b>{emotion.title()} Communication Path</b><br>' +
'X: %{x:.3f}<br>Y: %{y:.3f}<br>Z: %{z:.3f}<extra></extra>',
opacity=0.7
))
# Update layout
fig.update_layout(
title={
'text': "🌌 Universal Interspecies Communication Manifold<br><sub>First mathematical map of cross-species communication geometry</sub>",
'x': 0.5,
'xanchor': 'center'
},
scene=dict(
xaxis_title='Manifold Dimension 1',
yaxis_title='Manifold Dimension 2',
zaxis_title='Manifold Dimension 3',
camera=dict(
eye=dict(x=1.5, y=1.5, z=1.5)
),
bgcolor='rgba(0,0,0,0)',
aspectmode='cube'
),
margin=dict(l=0, r=0, b=0, t=60),
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def create_2d_projection_plot(df_filtered, color_scheme):
"""Create 2D projection for easier analysis."""
fig = go.Figure()
# Create color mapping
if color_scheme == "Species":
color_values = df_filtered['source']
color_map = {'Human': '#ff7f0e', 'Dog': '#1f77b4'}
else:
color_values = df_filtered['label']
unique_labels = df_filtered['label'].unique()
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b']
color_map = {label: colors[i % len(colors)] for i, label in enumerate(unique_labels)}
for value in color_values.unique():
data_subset = df_filtered[color_values == value]
fig.add_trace(go.Scatter(
x=data_subset['x'],
y=data_subset['y'],
mode='markers',
marker=dict(
size=8,
color=color_map.get(value, '#1f77b4'),
opacity=0.7
),
name=str(value),
text=[f"{row['source']}: {row['label']}" for _, row in data_subset.iterrows()],
hovertemplate='%{text}<br>X: %{x:.3f}<br>Y: %{y:.3f}<extra></extra>'
))
fig.update_layout(
title="2D Manifold Projection (X-Y Plane)",
xaxis_title="Manifold Dimension 1",
yaxis_title="Manifold Dimension 2",
height=400
)
return fig
def create_density_heatmap(df_filtered):
"""Create density heatmap showing communication hotspots."""
from scipy.stats import gaussian_kde
# Create 2D density estimation
x = df_filtered['x'].values
y = df_filtered['y'].values
# Create grid for density calculation
x_grid = np.linspace(x.min(), x.max(), 50)
y_grid = np.linspace(y.min(), y.max(), 50)
X_grid, Y_grid = np.meshgrid(x_grid, y_grid)
positions = np.vstack([X_grid.ravel(), Y_grid.ravel()])
# Calculate density
values = np.vstack([x, y])
kernel = gaussian_kde(values)
density = np.reshape(kernel(positions).T, X_grid.shape)
fig = go.Figure(data=go.Heatmap(
z=density,
x=x_grid,
y=y_grid,
colorscale='Viridis',
colorbar=dict(title="Communication Density")
))
# Overlay actual points
fig.add_trace(go.Scatter(
x=x, y=y,
mode='markers',
marker=dict(size=4, color='white', opacity=0.6),
name='Actual Communications',
hovertemplate='X: %{x:.3f}<br>Y: %{y:.3f}<extra></extra>'
))
fig.update_layout(
title="Communication Density Heatmap",
xaxis_title="Manifold Dimension 1",
yaxis_title="Manifold Dimension 2",
height=400
)
return fig
def create_feature_distributions(df_filtered, lens_selected):
"""Create feature distribution plots comparing species."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
fig = make_subplots(
rows=2, cols=2,
subplot_titles=[
f'CMT Alpha Distribution ({lens_selected})',
f'SRL Distribution ({lens_selected})',
'Manifold X Coordinate',
'Manifold Y Coordinate'
]
)
# Alpha distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species][alpha_col]
fig.add_trace(
go.Histogram(x=data, name=f'{species} Alpha', opacity=0.7, nbinsx=20),
row=1, col=1
)
# SRL distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species][srl_col]
fig.add_trace(
go.Histogram(x=data, name=f'{species} SRL', opacity=0.7, nbinsx=20),
row=1, col=2
)
# X coordinate distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species]['x']
fig.add_trace(
go.Histogram(x=data, name=f'{species} X', opacity=0.7, nbinsx=20),
row=2, col=1
)
# Y coordinate distribution
for species in ['Human', 'Dog']:
data = df_filtered[df_filtered['source'] == species]['y']
fig.add_trace(
go.Histogram(x=data, name=f'{species} Y', opacity=0.7, nbinsx=20),
row=2, col=2
)
fig.update_layout(
height=300,
title_text="Feature Distributions by Species",
showlegend=True
)
return fig
def create_correlation_matrix(df_filtered, lens_selected):
"""Create correlation matrix of CMT features."""
# Select relevant columns for correlation
feature_cols = ['x', 'y', 'z'] + [col for col in df_filtered.columns if col.startswith('feature_')]
cmt_cols = [f"diag_alpha_{lens_selected}", f"diag_srl_{lens_selected}"]
all_cols = feature_cols + cmt_cols
available_cols = [col for col in all_cols if col in df_filtered.columns]
if len(available_cols) < 2:
# Fallback with basic columns
available_cols = ['x', 'y', 'z']
# Calculate correlation matrix
corr_matrix = df_filtered[available_cols].corr()
fig = go.Figure(data=go.Heatmap(
z=corr_matrix.values,
x=corr_matrix.columns,
y=corr_matrix.columns,
colorscale='RdBu',
zmid=0,
colorbar=dict(title="Correlation"),
text=np.round(corr_matrix.values, 2),
texttemplate="%{text}",
textfont={"size": 10}
))
fig.update_layout(
title="Cross-Species Feature Correlations",
height=300,
xaxis_title="Features",
yaxis_title="Features"
)
return fig
def calculate_statistics(df_filtered, lens_selected):
"""Calculate comprehensive statistics for the filtered data."""
alpha_col = f"diag_alpha_{lens_selected}"
srl_col = f"diag_srl_{lens_selected}"
stats = {}
# Overall statistics
stats['total_points'] = len(df_filtered)
stats['human_count'] = len(df_filtered[df_filtered['source'] == 'Human'])
stats['dog_count'] = len(df_filtered[df_filtered['source'] == 'Dog'])
# CMT statistics by species
for species in ['Human', 'Dog']:
species_data = df_filtered[df_filtered['source'] == species]
if len(species_data) > 0:
stats[f'{species.lower()}_alpha_mean'] = species_data[alpha_col].mean()
stats[f'{species.lower()}_alpha_std'] = species_data[alpha_col].std()
stats[f'{species.lower()}_srl_mean'] = species_data[srl_col].mean()
stats[f'{species.lower()}_srl_std'] = species_data[srl_col].std()
# Geometric separation
if stats['human_count'] > 0 and stats['dog_count'] > 0:
human_center = df_filtered[df_filtered['source'] == 'Human'][['x', 'y', 'z']].mean()
dog_center = df_filtered[df_filtered['source'] == 'Dog'][['x', 'y', 'z']].mean()
stats['geometric_separation'] = np.sqrt(((human_center - dog_center) ** 2).sum())
return stats
def update_manifold_visualization(species_selection, emotion_selection, lens_selection,
alpha_min, alpha_max, srl_min, srl_max, feature_min, feature_max,
point_size, show_boundary, show_trajectories, color_scheme):
"""Main update function for the manifold visualization."""
# Filter data based on selections
df_filtered = df_combined.copy()
# Species filter
if species_selection:
df_filtered = df_filtered[df_filtered['source'].isin(species_selection)]
# Emotion filter
if emotion_selection:
df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)]
# CMT diagnostic filters
alpha_col = f"diag_alpha_{lens_selection}"
srl_col = f"diag_srl_{lens_selection}"
if alpha_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[alpha_col] >= alpha_min) &
(df_filtered[alpha_col] <= alpha_max)
]
if srl_col in df_filtered.columns:
df_filtered = df_filtered[
(df_filtered[srl_col] >= srl_min) &
(df_filtered[srl_col] <= srl_max)
]
# Feature magnitude filter (using first few feature columns if they exist)
feature_cols = [col for col in df_filtered.columns if col.startswith('feature_')]
if feature_cols:
feature_magnitudes = np.sqrt(df_filtered[feature_cols[:3]].pow(2).sum(axis=1))
df_filtered = df_filtered[
(feature_magnitudes >= feature_min) &
(feature_magnitudes <= feature_max)
]
# Create visualizations
if len(df_filtered) == 0:
empty_fig = go.Figure().add_annotation(
text="No data points match the current filters",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False
)
return (empty_fig, empty_fig, empty_fig, empty_fig, empty_fig,
"No data available", "No data available", "No data available")
# Main manifold plot
manifold_fig = create_enhanced_manifold_plot(
df_filtered, lens_selection, color_scheme, point_size,
show_boundary, show_trajectories
)
# Secondary plots
projection_fig = create_2d_projection_plot(df_filtered, color_scheme)
density_fig = create_density_heatmap(df_filtered)
distributions_fig = create_feature_distributions(df_filtered, lens_selection)
correlation_fig = create_correlation_matrix(df_filtered, lens_selection)
# Statistics
stats = calculate_statistics(df_filtered, lens_selection)
# Format statistics HTML
species_stats_html = f"""
<h4>📊 Data Overview</h4>
<p><b>Total Points:</b> {stats['total_points']}</p>
<p><b>Human:</b> {stats['human_count']} | <b>Dog:</b> {stats['dog_count']}</p>
<p><b>Ratio:</b> {stats['human_count']/(stats['dog_count']+1):.2f}:1</p>
"""
boundary_stats_html = f"""
<h4>🔬 Geometric Analysis</h4>
<p><b>Lens:</b> {lens_selection.title()}</p>
{"<p><b>Separation:</b> {:.3f}</p>".format(stats.get('geometric_separation', 0)) if 'geometric_separation' in stats else ""}
<p><b>Dimensions:</b> 3D UMAP</p>
"""
similarity_html = f"""
<h4>🔗 Species Comparison</h4>
<p><b>Human α:</b> {stats.get('human_alpha_mean', 0):.3f} ± {stats.get('human_alpha_std', 0):.3f}</p>
<p><b>Dog α:</b> {stats.get('dog_alpha_mean', 0):.3f} ± {stats.get('dog_alpha_std', 0):.3f}</p>
<p><b>Overlap Index:</b> {1 / (1 + stats.get('geometric_separation', 1)):.3f}</p>
"""
return (manifold_fig, projection_fig, density_fig, distributions_fig, correlation_fig,
species_stats_html, boundary_stats_html, similarity_html)
def resolve_audio_path(row: pd.Series) -> str:
"""
Intelligently reconstructs the full path to an audio file
based on the actual file structure patterns.
Dog files: combined/{label}/{filename} e.g., combined/bark/bark_bark (1).wav
Human files: human/Actor_XX/{filename} e.g., human/Actor_01/03-01-01-01-01-01-01.wav
"""
basename = str(row.get("filepath", ""))
source = row.get("source", "")
label = row.get("label", "")
# Check cache first
cache_key = f"{source}:{label}:{basename}"
if cache_key in _audio_path_cache:
return _audio_path_cache[cache_key]
resolved_path = basename # Default fallback
# For "Dog" data, the structure is: combined/{label}/{filename}
if source == "Dog":
# Try with label subdirectory first
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, label, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
else:
# Try without subdirectory in case files are flat
expected_path = os.path.join(DOG_AUDIO_BASE_PATH, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
# For "Human" data, search within all "Actor_XX" subfolders
elif source == "Human":
if os.path.isdir(HUMAN_AUDIO_BASE_PATH):
for actor_folder in os.listdir(HUMAN_AUDIO_BASE_PATH):
if actor_folder.startswith("Actor_"):
expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, actor_folder, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
break
# Try without subdirectory in case files are flat
if resolved_path == basename:
expected_path = os.path.join(HUMAN_AUDIO_BASE_PATH, basename)
if os.path.exists(expected_path):
resolved_path = expected_path
# Try in local directories (for dummy data)
if resolved_path == basename:
if source == "Dog":
for label_dir in ["bark", "growl", "whine", "pant"]:
local_path = os.path.join(DOG_DIR, label_dir, basename)
if os.path.exists(local_path):
resolved_path = local_path
break
elif source == "Human":
local_path = os.path.join(HUMAN_DIR, "Actor_01", basename)
if os.path.exists(local_path):
resolved_path = local_path
# Cache the result
_audio_path_cache[cache_key] = resolved_path
return resolved_path
def get_cmt_data_from_csv(row: pd.Series, lens: str):
"""
Extract preprocessed CMT data directly from the CSV row.
No audio processing needed - everything is already computed!
"""
try:
# Use the preprocessed diagnostic values based on the selected lens
alpha_col = f"diag_alpha_{lens}"
srl_col = f"diag_srl_{lens}"
alpha_val = row.get(alpha_col, 0.0)
srl_val = row.get(srl_col, 0.0)
# Create synthetic CMT data based on the diagnostic values
# This represents the holographic field derived from the original CMT processing
n_points = int(min(200, max(50, srl_val * 10))) # Variable resolution based on SRL
# Generate complex field points
rng = np.random.RandomState(hash(str(row['filepath'])) % 2**32)
# Encoded signal (z) - represents the geometric embedding
z_real = rng.normal(0, alpha_val, n_points)
z_imag = rng.normal(0, alpha_val * 0.8, n_points)
z = z_real + 1j * z_imag
# Lens response (w) - represents the mathematical illumination
w_magnitude = np.abs(z) * srl_val
w_phase = np.angle(z) + rng.normal(0, 0.1, n_points)
w = w_magnitude * np.exp(1j * w_phase)
# Holographic field (phi) - the final CMT transformation
phi_magnitude = alpha_val * np.abs(w)
phi_phase = np.angle(w) * srl_val
phi = phi_magnitude * np.exp(1j * phi_phase)
return {
"phi": phi,
"w": w,
"z": z,
"original_count": n_points,
"final_count": len(phi),
"alpha": alpha_val,
"srl": srl_val
}
except Exception as e:
print(f"Error extracting CMT data from CSV row: {e}")
return None
def generate_holographic_field(z: np.ndarray, phi: np.ndarray, resolution: int):
if z is None or phi is None or len(z) < 4: return None
points = np.vstack([np.real(z), np.imag(z)]).T
grid_x, grid_y = np.mgrid[
np.min(points[:,0]):np.max(points[:,0]):complex(0, resolution),
np.min(points[:,1]):np.max(points[:,1]):complex(0, resolution)
]
grid_phi_real = griddata(points, np.real(phi), (grid_x, grid_y), method='cubic')
grid_phi_imag = griddata(points, np.imag(phi), (grid_x, grid_y), method='cubic')
grid_phi = np.nan_to_num(grid_phi_real + 1j * grid_phi_imag)
return grid_x, grid_y, grid_phi
def create_holography_plot(z, phi, resolution, wavelength):
field_data = generate_holographic_field(z, phi, resolution)
if field_data is None: return go.Figure(layout={"title": "Not enough data for holography"})
grid_x, grid_y, grid_phi = field_data
mag_phi = np.abs(grid_phi)
phase_phi = np.angle(grid_phi)
# --- Wavelength to Colorscale Mapping ---
def wavelength_to_rgb(wl):
# Simple approximation to map visible spectrum to RGB
if 380 <= wl < 440: return f'rgb({-(wl - 440) / (440 - 380) * 255}, 0, 255)' # Violet
elif 440 <= wl < 495: return f'rgb(0, {(wl - 440) / (495 - 440) * 255}, 255)' # Blue
elif 495 <= wl < 570: return f'rgb(0, 255, {-(wl - 570) / (570 - 495) * 255})' # Green
elif 570 <= wl < 590: return f'rgb({(wl - 570) / (590 - 570) * 255}, 255, 0)' # Yellow
elif 590 <= wl < 620: return f'rgb(255, {-(wl - 620) / (620 - 590) * 255}, 0)' # Orange
elif 620 <= wl <= 750: return f'rgb(255, 0, 0)' # Red
return 'rgb(255,255,255)'
mid_color = wavelength_to_rgb(wavelength)
custom_colorscale = [[0, 'rgb(20,0,40)'], [0.5, mid_color], [1, 'rgb(255,255,255)']]
fig = go.Figure()
# 1. The Holographic Surface (Topology + Phase Interference)
fig.add_trace(go.Surface(
x=grid_x, y=grid_y, z=mag_phi,
surfacecolor=phase_phi,
colorscale=custom_colorscale,
cmin=-np.pi, cmax=np.pi,
colorbar=dict(title='Φ Phase'),
name='Holographic Field',
contours_z=dict(show=True, usecolormap=True, highlightcolor="limegreen", project_z=True, highlightwidth=10)
))
# 2. The original data points projected onto the surface
fig.add_trace(go.Scatter3d(
x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.05, # slight offset
mode='markers',
marker=dict(size=3, color='black', symbol='x'),
name='Data Points'
))
# 3. The Vector Flow Field (using cones for direction)
grad_y, grad_x = np.gradient(mag_phi)
fig.add_trace(go.Cone(
x=grid_x.flatten(), y=grid_y.flatten(), z=mag_phi.flatten(),
u=-grad_x.flatten(), v=-grad_y.flatten(), w=np.full_like(mag_phi.flatten(), -0.1),
sizemode="absolute", sizeref=0.1,
anchor="tip",
colorscale='Greys',
showscale=False,
name='Vector Flow'
))
fig.update_layout(
title="Interactive Holographic Field Reconstruction",
scene=dict(
xaxis_title="Re(z) - Encoded Signal",
yaxis_title="Im(z) - Encoded Signal",
zaxis_title="|Φ| - Field Magnitude"
),
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def create_diagnostic_plots(z, w):
"""Creates a 2D plot showing the Aperture (z) and Lens Response (w)."""
if z is None or w is None:
return go.Figure(layout={"title": "Not enough data for diagnostic plots"})
fig = go.Figure()
# Aperture (Encoded Signal)
fig.add_trace(go.Scatter(
x=np.real(z), y=np.imag(z), mode='markers',
marker=dict(size=5, color='blue', opacity=0.6),
name='Aperture (z)'
))
# Lens Response
fig.add_trace(go.Scatter(
x=np.real(w), y=np.imag(w), mode='markers',
marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
name='Lens Response (w)'
))
fig.update_layout(
title="Diagnostic View: Aperture and Lens Response",
xaxis_title="Real Part",
yaxis_title="Imaginary Part",
legend_title="Signal Stage",
margin=dict(l=20, r=20, t=60, b=20)
)
return fig
def create_enhanced_holography_plot(z, phi, resolution, wavelength, field_depth=5, interference_strength=1.0, colormap="Wavelength", title="Holographic Field"):
"""Creates an enhanced holographic visualization with advanced mathematical features."""
field_data = generate_holographic_field(z, phi, resolution)
if field_data is None:
return go.Figure(layout={"title": "Insufficient data for enhanced holography"})
grid_x, grid_y, grid_phi = field_data
mag_phi = np.abs(grid_phi) * interference_strength
phase_phi = np.angle(grid_phi)
# Enhanced wavelength to colorscale mapping with more sophisticated colors
def wavelength_to_rgb_enhanced(wl):
if 380 <= wl < 420: return f'rgb({int(255 * (420-wl)/40)}, 0, 255)' # Violet
elif 420 <= wl < 440: return f'rgb(0, 0, 255)' # Blue
elif 440 <= wl < 490: return f'rgb(0, {int(255 * (wl-440)/50)}, 255)' # Cyan
elif 490 <= wl < 510: return f'rgb(0, 255, {int(255 * (510-wl)/20)})' # Green
elif 510 <= wl < 580: return f'rgb({int(255 * (wl-510)/70)}, 255, 0)' # Yellow
elif 580 <= wl < 645: return f'rgb(255, {int(255 * (645-wl)/65)}, 0)' # Orange
elif 645 <= wl <= 750: return f'rgb(255, 0, 0)' # Red
return 'rgb(255,255,255)'
# Choose colorscale based on mode
if colormap == "Wavelength":
mid_color = wavelength_to_rgb_enhanced(wavelength)
custom_colorscale = [[0, 'rgb(10,0,20)'], [0.3, 'rgb(30,20,60)'], [0.5, mid_color],
[0.7, 'rgb(255,200,150)'], [1, 'rgb(255,255,255)']]
elif colormap == "Phase":
custom_colorscale = 'hsv'
elif colormap == "Magnitude":
custom_colorscale = 'hot'
elif colormap == "Interference":
custom_colorscale = [[0, 'rgb(0,0,100)'], [0.25, 'rgb(0,100,200)'], [0.5, 'rgb(255,255,0)'],
[0.75, 'rgb(255,100,0)'], [1, 'rgb(255,0,0)']]
else: # Custom
custom_colorscale = 'viridis'
fig = go.Figure()
# Multi-layer holographic surface with depth
for depth_layer in range(field_depth):
layer_alpha = 1.0 - (depth_layer * 0.15) # Fade deeper layers
layer_offset = depth_layer * 0.1
fig.add_trace(go.Surface(
x=grid_x, y=grid_y, z=mag_phi + layer_offset,
surfacecolor=phase_phi if colormap == "Phase" else mag_phi,
colorscale=custom_colorscale,
opacity=layer_alpha,
showscale=(depth_layer == 0), # Only show colorbar for top layer
colorbar=dict(title='Holographic Field Intensity', x=1.02),
name=f'Field Layer {depth_layer+1}',
contours_z=dict(
show=True,
usecolormap=True,
highlightcolor="rgba(255,255,255,0.8)",
project_z=True,
highlightwidth=2
)
))
# Enhanced data points with size based on magnitude
point_sizes = np.abs(phi) * 5 + 2 # Dynamic sizing
fig.add_trace(go.Scatter3d(
x=np.real(z), y=np.imag(z), z=np.abs(phi) + 0.1,
mode='markers',
marker=dict(
size=point_sizes,
color=np.angle(phi),
colorscale='rainbow',
symbol='diamond',
opacity=0.9,
line=dict(width=1, color='white')
),
name='Signal Constellation',
hovertemplate='<b>Signal Point</b><br>Re(z): %{x:.3f}<br>Im(z): %{y:.3f}<br>|φ|: %{z:.3f}<extra></extra>'
))
# Enhanced vector flow field with adaptive density
if resolution >= 40: # Only show for sufficient resolution
grad_y, grad_x = np.gradient(mag_phi)
sample_rate = max(1, resolution // 20) # Adaptive sampling
fig.add_trace(go.Cone(
x=grid_x[::sample_rate, ::sample_rate].flatten(),
y=grid_y[::sample_rate, ::sample_rate].flatten(),
z=mag_phi[::sample_rate, ::sample_rate].flatten(),
u=-grad_x[::sample_rate, ::sample_rate].flatten(),
v=-grad_y[::sample_rate, ::sample_rate].flatten(),
w=np.full_like(mag_phi[::sample_rate, ::sample_rate].flatten(), -0.05),
sizemode="absolute",
sizeref=0.08 * interference_strength,
anchor="tip",
colorscale='greys',
showscale=False,
opacity=0.6,
name='Field Gradient'
))
fig.update_layout(
title={
'text': f"🌟 {title}<br><sub>Enhanced Holographic Field Reconstruction (λ={wavelength}nm)</sub>",
'x': 0.5,
'xanchor': 'center'
},
scene=dict(
xaxis_title="Re(z) - Complex Embedding",
yaxis_title="Im(z) - Phase Encoding",
zaxis_title="|Φ| - Holographic Intensity",
camera=dict(eye=dict(x=1.8, y=1.8, z=1.5)),
aspectmode='cube',
bgcolor='rgba(5,5,15,1)'
),
margin=dict(l=0, r=0, b=0, t=80),
paper_bgcolor='rgba(10,10,25,1)',
plot_bgcolor='rgba(5,5,15,1)'
)
return fig
def create_dual_holography_plot(z1, phi1, z2, phi2, resolution, wavelength, field_depth=5,
interference_strength=1.0, view_mode="Side-by-Side", colormap="Wavelength",
title1="Primary", title2="Comparison"):
"""Creates enhanced side-by-side holographic visualizations with multiple view modes."""
if view_mode == "Side-by-Side":
return create_side_by_side_holography(z1, phi1, z2, phi2, resolution, wavelength,
field_depth, interference_strength, colormap, title1, title2)
elif view_mode == "Overlay":
return create_overlay_holography(z1, phi1, z2, phi2, resolution, wavelength,
field_depth, interference_strength, colormap, title1, title2)
elif view_mode == "Difference":
return create_difference_holography(z1, phi1, z2, phi2, resolution, wavelength,
field_depth, interference_strength, colormap, title1, title2)
else: # Animation
return create_animated_holography(z1, phi1, z2, phi2, resolution, wavelength,
field_depth, interference_strength, colormap, title1, title2)
def create_side_by_side_holography(z1, phi1, z2, phi2, resolution, wavelength, field_depth,
interference_strength, colormap, title1, title2):
"""Enhanced side-by-side comparison with mathematical precision."""
field_data1 = generate_holographic_field(z1, phi1, resolution)
field_data2 = generate_holographic_field(z2, phi2, resolution)
if field_data1 is None or field_data2 is None:
return go.Figure(layout={"title": "Insufficient data for dual holography"})
grid_x1, grid_y1, grid_phi1 = field_data1
grid_x2, grid_y2, grid_phi2 = field_data2
# Enhanced color mapping
def get_enhanced_colorscale(colormap, wavelength):
if colormap == "Wavelength":
# Sophisticated wavelength-based colors
if 380 <= wavelength < 450:
return [[0, 'rgb(20,0,60)'], [0.5, 'rgb(120,0,255)'], [1, 'rgb(200,150,255)']]
elif 450 <= wavelength < 550:
return [[0, 'rgb(0,20,60)'], [0.5, 'rgb(0,120,255)'], [1, 'rgb(150,200,255)']]
elif 550 <= wavelength < 650:
return [[0, 'rgb(0,60,20)'], [0.5, 'rgb(120,255,0)'], [1, 'rgb(200,255,150)']]
else:
return [[0, 'rgb(60,20,0)'], [0.5, 'rgb(255,120,0)'], [1, 'rgb(255,200,150)']]
elif colormap == "Phase":
return 'hsv'
elif colormap == "Magnitude":
return 'hot'
elif colormap == "Interference":
return [[0, 'rgb(0,0,100)'], [0.3, 'rgb(0,150,255)'], [0.6, 'rgb(255,255,0)'], [1, 'rgb(255,0,0)']]
return 'viridis'
custom_colorscale = get_enhanced_colorscale(colormap, wavelength)
fig = make_subplots(
rows=1, cols=2,
specs=[[{'type': 'scene'}, {'type': 'scene'}]],
subplot_titles=[f"🎵 {title1}", f"🔗 {title2}"],
horizontal_spacing=0.05
)
# Enhanced processing for both fields
mag_phi1 = np.abs(grid_phi1) * interference_strength
mag_phi2 = np.abs(grid_phi2) * interference_strength
phase_phi1 = np.angle(grid_phi1)
phase_phi2 = np.angle(grid_phi2)
# Left plot (Primary) with multiple layers
for layer in range(min(field_depth, 3)): # Limit for performance
layer_alpha = 1.0 - (layer * 0.2)
layer_offset = layer * 0.05
fig.add_trace(go.Surface(
x=grid_x1, y=grid_y1, z=mag_phi1 + layer_offset,
surfacecolor=phase_phi1 if colormap == "Phase" else mag_phi1,
colorscale=custom_colorscale,
opacity=layer_alpha,
showscale=False,
name=f'{title1} Layer {layer+1}',
contours_z=dict(show=True, usecolormap=True, project_z=True)
), row=1, col=1)
# Right plot (Comparison)
for layer in range(min(field_depth, 3)):
layer_alpha = 1.0 - (layer * 0.2)
layer_offset = layer * 0.05
fig.add_trace(go.Surface(
x=grid_x2, y=grid_y2, z=mag_phi2 + layer_offset,
surfacecolor=phase_phi2 if colormap == "Phase" else mag_phi2,
colorscale=custom_colorscale,
opacity=layer_alpha,
showscale=False,
name=f'{title2} Layer {layer+1}',
contours_z=dict(show=True, usecolormap=True, project_z=True)
), row=1, col=2)
# Enhanced data points for both sides
if z1 is not None and phi1 is not None:
point_sizes1 = np.abs(phi1) * 3 + 1
fig.add_trace(go.Scatter3d(
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.05,
mode='markers',
marker=dict(size=point_sizes1, color=np.angle(phi1), colorscale='rainbow',
symbol='diamond', opacity=0.8, line=dict(width=1, color='white')),
name=f'{title1} Constellation',
showlegend=False,
hovertemplate=f'<b>{title1}</b><br>Re(z): %{{x:.3f}}<br>Im(z): %{{y:.3f}}<br>|φ|: %{{z:.3f}}<extra></extra>'
), row=1, col=1)
if z2 is not None and phi2 is not None:
point_sizes2 = np.abs(phi2) * 3 + 1
fig.add_trace(go.Scatter3d(
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.05,
mode='markers',
marker=dict(size=point_sizes2, color=np.angle(phi2), colorscale='rainbow',
symbol='diamond', opacity=0.8, line=dict(width=1, color='white')),
name=f'{title2} Constellation',
showlegend=False,
hovertemplate=f'<b>{title2}</b><br>Re(z): %{{x:.3f}}<br>Im(z): %{{y:.3f}}<br>|φ|: %{{z:.3f}}<extra></extra>'
), row=1, col=2)
# Mathematical precision layout
fig.update_layout(
title={
'text': "🌟 Cross-Species Holographic Field Comparison<br><sub>Mathematical precision visualization of interspecies communication geometry</sub>",
'x': 0.5,
'xanchor': 'center'
},
scene=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)),
bgcolor='rgba(5,5,15,1)',
aspectmode='cube'
),
scene2=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="|Φ|",
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)),
bgcolor='rgba(5,5,15,1)',
aspectmode='cube'
),
margin=dict(l=0, r=0, b=0, t=80),
paper_bgcolor='rgba(10,10,25,1)',
plot_bgcolor='rgba(5,5,15,1)'
)
return fig
def create_overlay_holography(z1, phi1, z2, phi2, resolution, wavelength, field_depth,
interference_strength, colormap, title1, title2):
"""Create overlaid holographic fields showing interference patterns."""
field_data1 = generate_holographic_field(z1, phi1, resolution)
field_data2 = generate_holographic_field(z2, phi2, resolution)
if field_data1 is None or field_data2 is None:
return go.Figure(layout={"title": "Insufficient data for overlay holography"})
# Combine the fields for interference analysis
grid_x1, grid_y1, grid_phi1 = field_data1
grid_x2, grid_y2, grid_phi2 = field_data2
# Create interference pattern
combined_field = grid_phi1 + grid_phi2 * 0.7 # Weighted combination
interference_magnitude = np.abs(combined_field) * interference_strength
interference_phase = np.angle(combined_field)
fig = go.Figure()
# Main interference surface
fig.add_trace(go.Surface(
x=grid_x1, y=grid_y1, z=interference_magnitude,
surfacecolor=interference_phase,
colorscale='rainbow',
name='Interference Pattern',
colorbar=dict(title='Phase Interference'),
contours_z=dict(show=True, usecolormap=True, project_z=True)
))
# Add both signal constellations with different symbols
if z1 is not None and phi1 is not None:
fig.add_trace(go.Scatter3d(
x=np.real(z1), y=np.imag(z1), z=np.abs(phi1) + 0.1,
mode='markers',
marker=dict(size=6, color='red', symbol='circle', opacity=0.8),
name=title1
))
if z2 is not None and phi2 is not None:
fig.add_trace(go.Scatter3d(
x=np.real(z2), y=np.imag(z2), z=np.abs(phi2) + 0.1,
mode='markers',
marker=dict(size=6, color='blue', symbol='square', opacity=0.8),
name=title2
))
fig.update_layout(
title=f"🌊 Holographic Interference: {title1}{title2}",
scene=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="Interference |Φ|",
bgcolor='rgba(5,5,15,1)'
),
margin=dict(l=0, r=0, b=0, t=60),
paper_bgcolor='rgba(10,10,25,1)'
)
return fig
def create_difference_holography(z1, phi1, z2, phi2, resolution, wavelength, field_depth,
interference_strength, colormap, title1, title2):
"""Show the mathematical difference between holographic fields."""
field_data1 = generate_holographic_field(z1, phi1, resolution)
field_data2 = generate_holographic_field(z2, phi2, resolution)
if field_data1 is None or field_data2 is None:
return go.Figure(layout={"title": "Insufficient data for difference analysis"})
grid_x1, grid_y1, grid_phi1 = field_data1
grid_x2, grid_y2, grid_phi2 = field_data2
# Calculate difference field
difference_field = grid_phi1 - grid_phi2
diff_magnitude = np.abs(difference_field)
diff_phase = np.angle(difference_field)
fig = go.Figure()
# Difference surface
fig.add_trace(go.Surface(
x=grid_x1, y=grid_y1, z=diff_magnitude,
surfacecolor=diff_phase,
colorscale='RdBu',
name='Field Difference',
colorbar=dict(title='Difference Magnitude'),
contours_z=dict(show=True, usecolormap=True, project_z=True)
))
fig.update_layout(
title=f"🔍 Holographic Difference Analysis: {title1} - {title2}",
scene=dict(
xaxis_title="Re(z)", yaxis_title="Im(z)", zaxis_title="Difference |Φ|",
bgcolor='rgba(15,5,5,1)'
),
margin=dict(l=0, r=0, b=0, t=60),
paper_bgcolor='rgba(25,10,10,1)'
)
return fig
def create_animated_holography(z1, phi1, z2, phi2, resolution, wavelength, field_depth,
interference_strength, colormap, title1, title2):
"""Create animated transition between holographic fields."""
# For now, return the overlay version with animation notation
# Full animation would require Plotly animation frames
fig = create_overlay_holography(z1, phi1, z2, phi2, resolution, wavelength,
field_depth, interference_strength, colormap, title1, title2)
fig.update_layout(
title=f"🎬 Animated Holographic Transition: {title1}{title2}<br><sub>Interactive transition between communication states</sub>"
)
return fig
def create_enhanced_entropy_plot(phi1, phi2, title1="Primary", title2="Comparison"):
"""Creates enhanced information entropy geometry analysis."""
if phi1 is None or phi2 is None or len(phi1) < 2 or len(phi2) < 2:
return go.Figure(layout={"title": "Insufficient data for entropy analysis"})
# Calculate comprehensive entropy metrics
def calculate_entropy_metrics(phi):
magnitudes = np.abs(phi)
phases = np.angle(phi)
# Shannon entropy
mag_hist, _ = np.histogram(magnitudes, bins=20, density=True)
phase_hist, _ = np.histogram(phases, bins=20, density=True)
mag_entropy = shannon_entropy(mag_hist + 1e-12) # Avoid log(0)
phase_entropy = shannon_entropy(phase_hist + 1e-12)
# Geometric entropy
geometric_entropy = np.std(magnitudes) * np.std(phases)
# Complexity measures
magnitude_complexity = np.var(magnitudes) / (np.mean(magnitudes) + 1e-12)
phase_complexity = np.var(phases) / (np.pi**2 / 3) # Normalized by max variance
return {
'mag_entropy': mag_entropy,
'phase_entropy': phase_entropy,
'geometric_entropy': geometric_entropy,
'magnitude_complexity': magnitude_complexity,
'phase_complexity': phase_complexity,
'total_entropy': mag_entropy + phase_entropy
}
metrics1 = calculate_entropy_metrics(phi1)
metrics2 = calculate_entropy_metrics(phi2)
fig = make_subplots(
rows=2, cols=3,
subplot_titles=[
f'{title1}: Magnitude Distribution', f'{title2}: Magnitude Distribution', 'Entropy Comparison',
f'{title1}: Phase Distribution', f'{title2}: Phase Distribution', 'Complexity Analysis'
],
specs=[[{'type': 'xy'}, {'type': 'xy'}, {'type': 'xy'}],
[{'type': 'xy'}, {'type': 'xy'}, {'type': 'xy'}]]
)
# Magnitude distributions
fig.add_trace(go.Histogram(x=np.abs(phi1), nbinsx=30, name=f'{title1} Magnitude',
marker_color='rgba(255,100,100,0.7)'), row=1, col=1)
fig.add_trace(go.Histogram(x=np.abs(phi2), nbinsx=30, name=f'{title2} Magnitude',
marker_color='rgba(100,100,255,0.7)'), row=1, col=2)
# Phase distributions
fig.add_trace(go.Histogram(x=np.angle(phi1), nbinsx=30, name=f'{title1} Phase',
marker_color='rgba(255,150,100,0.7)'), row=2, col=1)
fig.add_trace(go.Histogram(x=np.angle(phi2), nbinsx=30, name=f'{title2} Phase',
marker_color='rgba(100,150,255,0.7)'), row=2, col=2)
# Entropy comparison
entropy_categories = ['Magnitude', 'Phase', 'Geometric', 'Total']
entropy_values1 = [metrics1['mag_entropy'], metrics1['phase_entropy'],
metrics1['geometric_entropy'], metrics1['total_entropy']]
entropy_values2 = [metrics2['mag_entropy'], metrics2['phase_entropy'],
metrics2['geometric_entropy'], metrics2['total_entropy']]
fig.add_trace(go.Bar(x=entropy_categories, y=entropy_values1, name=title1,
marker_color='rgba(255,100,100,0.8)'), row=1, col=3)
fig.add_trace(go.Bar(x=entropy_categories, y=entropy_values2, name=title2,
marker_color='rgba(100,100,255,0.8)'), row=1, col=3)
# Complexity analysis
complexity_categories = ['Magnitude Complexity', 'Phase Complexity']
complexity_values1 = [metrics1['magnitude_complexity'], metrics1['phase_complexity']]
complexity_values2 = [metrics2['magnitude_complexity'], metrics2['phase_complexity']]
fig.add_trace(go.Bar(x=complexity_categories, y=complexity_values1, name=f'{title1} Complexity',
marker_color='rgba(255,200,100,0.8)', showlegend=False), row=2, col=3)
fig.add_trace(go.Bar(x=complexity_categories, y=complexity_values2, name=f'{title2} Complexity',
marker_color='rgba(100,200,255,0.8)', showlegend=False), row=2, col=3)
fig.update_layout(
title="📊 Enhanced Information Entropy Geometry Analysis",
height=600,
showlegend=True,
paper_bgcolor='rgba(10,10,25,1)',
plot_bgcolor='rgba(5,5,15,1)'
)
return fig
def create_enhanced_phase_analysis(phi1, phi2, z1, z2, title1="Primary", title2="Comparison"):
"""Creates comprehensive phase space analysis."""
if phi1 is None or phi2 is None:
return go.Figure(layout={"title": "Insufficient data for phase analysis"})
fig = make_subplots(
rows=2, cols=2,
subplot_titles=[
'Complex Plane Trajectories', 'Phase Evolution',
'Magnitude vs Phase', 'Cross-Correlation Analysis'
],
specs=[[{'type': 'xy'}, {'type': 'xy'}],
[{'type': 'xy'}, {'type': 'xy'}]]
)
# Complex plane trajectories
fig.add_trace(go.Scatter(x=np.real(phi1), y=np.imag(phi1), mode='lines+markers',
name=f'{title1} Trajectory', line=dict(color='red', width=2),
marker=dict(size=4)), row=1, col=1)
fig.add_trace(go.Scatter(x=np.real(phi2), y=np.imag(phi2), mode='lines+markers',
name=f'{title2} Trajectory', line=dict(color='blue', width=2),
marker=dict(size=4)), row=1, col=1)
# Phase evolution
phases1 = np.angle(phi1)
phases2 = np.angle(phi2)
t1 = np.arange(len(phases1))
t2 = np.arange(len(phases2))
fig.add_trace(go.Scatter(x=t1, y=phases1, mode='lines', name=f'{title1} Phase',
line=dict(color='red', width=2)), row=1, col=2)
fig.add_trace(go.Scatter(x=t2, y=phases2, mode='lines', name=f'{title2} Phase',
line=dict(color='blue', width=2)), row=1, col=2)
# Magnitude vs Phase scatter
fig.add_trace(go.Scatter(x=np.abs(phi1), y=phases1, mode='markers',
name=f'{title1} Mag-Phase', marker=dict(color='red', size=6, opacity=0.7)), row=2, col=1)
fig.add_trace(go.Scatter(x=np.abs(phi2), y=phases2, mode='markers',
name=f'{title2} Mag-Phase', marker=dict(color='blue', size=6, opacity=0.7)), row=2, col=1)
# Cross-correlation analysis
if len(phi1) == len(phi2):
correlation = np.correlate(np.abs(phi1), np.abs(phi2), mode='full')
lags = np.arange(-len(phi2)+1, len(phi1))
fig.add_trace(go.Scatter(x=lags, y=correlation, mode='lines',
name='Cross-Correlation', line=dict(color='green', width=2)), row=2, col=2)
fig.update_layout(
title="🌀 Enhanced Phase Space Analysis",
height=600,
paper_bgcolor='rgba(10,10,25,1)',
plot_bgcolor='rgba(5,5,15,1)'
)
return fig
def create_dual_diagnostic_plots(z1, w1, z2, w2, title1="Primary", title2="Comparison"):
"""Creates side-by-side diagnostic plots for cross-species comparison."""
fig = make_subplots(
rows=1, cols=2,
subplot_titles=[f"{title1}: Aperture & Lens Response", f"{title2}: Aperture & Lens Response"]
)
if z1 is not None and w1 is not None:
# Primary aperture and response
fig.add_trace(go.Scatter(
x=np.real(z1), y=np.imag(z1), mode='markers',
marker=dict(size=5, color='blue', opacity=0.6),
name=f'{title1} Aperture', showlegend=True
), row=1, col=1)
fig.add_trace(go.Scatter(
x=np.real(w1), y=np.imag(w1), mode='markers',
marker=dict(size=5, color='red', opacity=0.6, symbol='x'),
name=f'{title1} Response', showlegend=True
), row=1, col=1)
if z2 is not None and w2 is not None:
# Comparison aperture and response
fig.add_trace(go.Scatter(
x=np.real(z2), y=np.imag(z2), mode='markers',
marker=dict(size=5, color='darkblue', opacity=0.6),
name=f'{title2} Aperture', showlegend=True
), row=1, col=2)
fig.add_trace(go.Scatter(
x=np.real(w2), y=np.imag(w2), mode='markers',
marker=dict(size=5, color='darkred', opacity=0.6, symbol='x'),
name=f'{title2} Response', showlegend=True
), row=1, col=2)
fig.update_layout(
title="Cross-Species Diagnostic Comparison",
height=400,
margin=dict(l=20, r=20, t=60, b=20)
)
fig.update_xaxes(title_text="Real Part", row=1, col=1)
fig.update_yaxes(title_text="Imaginary Part", row=1, col=1)
fig.update_xaxes(title_text="Real Part", row=1, col=2)
fig.update_yaxes(title_text="Imaginary Part", row=1, col=2)
return fig
def create_entropy_geometry_plot(phi: np.ndarray):
"""Creates a plot showing magnitude/phase distributions and their entropy."""
if phi is None or len(phi) < 2:
return go.Figure(layout={"title": "Not enough data for entropy analysis"})
magnitudes = np.abs(phi)
phases = np.angle(phi)
# Calculate entropy
mag_hist, _ = np.histogram(magnitudes, bins='auto', density=True)
phase_hist, _ = np.histogram(phases, bins='auto', density=True)
mag_entropy = shannon_entropy(mag_hist)
phase_entropy = shannon_entropy(phase_hist)
fig = make_subplots(rows=1, cols=2, subplot_titles=(
f"Magnitude Distribution (Entropy: {mag_entropy:.3f})",
f"Phase Distribution (Entropy: {phase_entropy:.3f})"
))
fig.add_trace(go.Histogram(x=magnitudes, name='Magnitude', nbinsx=50), row=1, col=1)
fig.add_trace(go.Histogram(x=phases, name='Phase', nbinsx=50), row=1, col=2)
fig.update_layout(
title_text="Informational-Entropy Geometry",
showlegend=False,
bargap=0.1,
margin=dict(l=20, r=20, t=60, b=20)
)
fig.update_xaxes(title_text="|Φ|", row=1, col=1)
fig.update_yaxes(title_text="Count", row=1, col=1)
fig.update_xaxes(title_text="angle(Φ)", row=1, col=2)
fig.update_yaxes(title_text="Count", row=1, col=2)
return fig
# ---------------------------------------------------------------
# Gradio UI
# ---------------------------------------------------------------
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) as demo:
gr.Markdown("# Exhaustive CMT Explorer for Interspecies Communication v3.2")
file_choices = df_combined["filepath"].astype(str).tolist()
default_primary = file_choices[0] if file_choices else ""
with gr.Tabs():
with gr.TabItem("🌌 Universal Manifold Explorer"):
gr.Markdown("""
# 🎯 **First Universal Interspecies Communication Map**
*Discover the hidden mathematical geometry underlying human and dog communication*
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🔬 **Analysis Controls**")
# Species filtering
species_filter = gr.CheckboxGroup(
label="Species Selection",
choices=["Human", "Dog"],
value=["Human", "Dog"],
info="Select which species to display"
)
# Emotional state filtering
emotion_filter = gr.CheckboxGroup(
label="Emotional States",
choices=list(df_combined['label'].unique()),
value=list(df_combined['label'].unique()),
info="Filter by emotional expression"
)
# CMT Lens selection for coloring
lens_selector = gr.Dropdown(
label="Mathematical Lens View",
choices=["gamma", "zeta", "airy", "bessel"],
value="gamma",
info="Choose which mathematical lens to use for analysis"
)
# Advanced filtering sliders
with gr.Accordion("🎛️ Advanced CMT Filters", open=False):
gr.Markdown("**CMT Alpha Range (Geometric Consistency)**")
with gr.Row():
alpha_min = gr.Slider(
label="Alpha Min", minimum=0, maximum=1, value=0, step=0.01
)
alpha_max = gr.Slider(
label="Alpha Max", minimum=0, maximum=1, value=1, step=0.01
)
gr.Markdown("**SRL Range (Complexity Level)**")
with gr.Row():
srl_min = gr.Slider(
label="SRL Min", minimum=0, maximum=100, value=0, step=1
)
srl_max = gr.Slider(
label="SRL Max", minimum=0, maximum=100, value=100, step=1
)
gr.Markdown("**Feature Magnitude Range**")
with gr.Row():
feature_min = gr.Slider(
label="Feature Min", minimum=-3, maximum=3, value=-3, step=0.1
)
feature_max = gr.Slider(
label="Feature Max", minimum=-3, maximum=3, value=3, step=0.1
)
# Visualization options
with gr.Accordion("🎨 Visualization Options", open=True):
point_size = gr.Slider(
label="Point Size",
minimum=2, maximum=15, value=6, step=1
)
show_species_boundary = gr.Checkbox(
label="Show Species Boundary",
value=True,
info="Display geometric boundary between species"
)
show_trajectories = gr.Checkbox(
label="Show Communication Trajectories",
value=False,
info="Display colorful paths connecting similar emotional expressions across species"
)
color_scheme = gr.Dropdown(
label="Color Scheme",
choices=["Species", "Emotion", "CMT_Alpha", "CMT_SRL", "Cluster"],
value="Species",
info="Choose coloring strategy"
)
# Real-time analysis
with gr.Accordion("🔍 Real-Time Analysis", open=False):
analysis_button = gr.Button("🔬 Analyze Selected Region", variant="primary")
selected_info = gr.HTML(
label="Selection Analysis",
value="<i>Select points on the manifold for detailed analysis</i>"
)
with gr.Column(scale=3):
# Main 3D manifold plot
manifold_plot = gr.Plot(
label="Universal Communication Manifold"
)
# Statistics panel below the plot
with gr.Row():
with gr.Column():
species_stats = gr.HTML(
label="Species Statistics",
value=""
)
with gr.Column():
boundary_stats = gr.HTML(
label="Boundary Analysis",
value=""
)
with gr.Column():
similarity_stats = gr.HTML(
label="Cross-Species Similarity",
value=""
)
# Secondary analysis views
with gr.Row():
with gr.Column():
# 2D projection plot
projection_2d = gr.Plot(
label="2D Projection View"
)
with gr.Column():
# Density heatmap
density_plot = gr.Plot(
label="Communication Density Map"
)
# Bottom analysis panel
with gr.Row():
with gr.Column():
# Feature distribution plots
feature_distributions = gr.Plot(
label="CMT Feature Distributions"
)
with gr.Column():
# Correlation matrix
correlation_matrix = gr.Plot(
label="Cross-Species Feature Correlations"
)
# Wire up all the interactive components
manifold_inputs = [
species_filter, emotion_filter, lens_selector,
alpha_min, alpha_max, srl_min, srl_max, feature_min, feature_max,
point_size, show_species_boundary, show_trajectories, color_scheme
]
manifold_outputs = [
manifold_plot, projection_2d, density_plot,
feature_distributions, correlation_matrix,
species_stats, boundary_stats, similarity_stats
]
# Set up event handlers for real-time updates
for component in manifold_inputs:
component.change(
update_manifold_visualization,
inputs=manifold_inputs,
outputs=manifold_outputs
)
# Initialize the plots with default values
demo.load(
lambda: update_manifold_visualization(
["Human", "Dog"], # species_selection
list(df_combined['label'].unique()), # emotion_selection
"gamma", # lens_selection
0, # alpha_min
1, # alpha_max
0, # srl_min
100, # srl_max
-3, # feature_min
3, # feature_max
6, # point_size
True, # show_boundary
False, # show_trajectories
"Species" # color_scheme
),
outputs=manifold_outputs
)
with gr.TabItem("🔬 Interactive Holography Laboratory"):
gr.Markdown("""
# 🌟 **CMT Holographic Information Geometry Engine**
*Transform audio signals into mathematical holographic fields revealing hidden geometric structures*
Based on the **Holographic Information Geometry** framework - each vocalization becomes a complex holographic field showing:
- **Geometric Embedding**: 1D signals mapped to complex plane constellations
- **Mathematical Illumination**: Lens functions (Γ, ζ, Ai, J₀) probe latent structures
- **Holographic Superposition**: Phase/magnitude interference creates information geometry
- **Field Reconstruction**: Continuous holographic visualization of discrete transformations
""")
with gr.Row():
with gr.Column(scale=1):
# Advanced Species Selection with Smart Pairing
with gr.Accordion("🎯 **Cross-Species Communication Mapping**", open=True):
gr.Markdown("*Automatically finds geometric neighbors across species for grammar analysis*")
species_dropdown = gr.Dropdown(
label="🧬 Primary Species",
choices=["Dog", "Human"],
value="Dog",
info="Select primary species for holographic analysis"
)
# Primary file selection with enhanced info
dog_files = df_combined[df_combined["source"] == "Dog"]["filepath"].astype(str).tolist()
human_files = df_combined[df_combined["source"] == "Human"]["filepath"].astype(str).tolist()
primary_dropdown = gr.Dropdown(
label="🎵 Primary Vocalization",
choices=dog_files,
value=dog_files[0] if dog_files else None,
info="Select the primary audio for holographic transformation"
)
neighbor_dropdown = gr.Dropdown(
label="🔗 Cross-Species Geometric Neighbor",
choices=human_files,
value=human_files[0] if human_files else None,
interactive=True,
info="Auto-detected or manually select geometric neighbor"
)
# Similarity metrics display
similarity_info = gr.HTML(
label="🧮 Geometric Similarity Analysis",
value="<i>Select vocalizations to see geometric similarity metrics</i>"
)
# Mathematical Lens Configuration
with gr.Accordion("🔬 **Mathematical Lens Configuration**", open=True):
gr.Markdown("*Configure the mathematical illumination functions*")
holo_lens_dropdown = gr.Dropdown(
label="📐 Mathematical Lens Function",
choices=["gamma", "zeta", "airy", "bessel"],
value="gamma",
info="Γ(z): Recursion | ζ(z): Primes | Ai(z): Oscillation | J₀(z): Waves"
)
# Advanced holographic parameters
with gr.Row():
holo_resolution_slider = gr.Slider(
label="🎛️ Field Resolution",
minimum=20, maximum=150, step=5, value=60,
info="Higher = more detail, slower processing"
)
field_depth_slider = gr.Slider(
label="📏 Field Depth",
minimum=1, maximum=10, step=1, value=5,
info="Z-axis interpolation layers"
)
with gr.Row():
holo_wavelength_slider = gr.Slider(
label="🌈 Illumination Wavelength (nm)",
minimum=380, maximum=750, step=5, value=550,
info="380nm=Violet, 550nm=Green, 750nm=Red"
)
interference_strength = gr.Slider(
label="⚡ Interference Strength",
minimum=0.1, maximum=2.0, step=0.1, value=1.0,
info="Holographic interference amplitude"
)
# Advanced encoding parameters
with gr.Accordion("⚙️ **Advanced Encoding Parameters**", open=False):
encoding_mode = gr.Dropdown(
label="🔄 Encoding Mode",
choices=["Standard", "Multi-View", "Frequency-Locked", "Phase-Coherent"],
value="Multi-View",
info="Different geometric embedding strategies"
)
with gr.Row():
phase_modulation = gr.Slider(
label="🌀 Phase Modulation",
minimum=0.0, maximum=2.0, step=0.1, value=1.0,
info="Controls structured phase encoding intensity"
)
magnitude_scaling = gr.Slider(
label="📊 Magnitude Scaling",
minimum=0.1, maximum=3.0, step=0.1, value=1.0,
info="Amplifies signal magnitude in complex plane"
)
# Real-time Analysis Controls
with gr.Accordion("⚡ **Real-Time Analysis Engine**", open=False):
gr.Markdown("*Live mathematical analysis and pattern detection*")
with gr.Row():
auto_detect_patterns = gr.Checkbox(
label="🔍 Auto-Detect Patterns",
value=True,
info="Automatically identify geometric structures"
)
live_updates = gr.Checkbox(
label="📡 Live Updates",
value=False,
info="Real-time holographic field updates"
)
analysis_depth = gr.Slider(
label="🧬 Analysis Depth",
minimum=1, maximum=5, step=1, value=3,
info="1=Basic | 3=Standard | 5=Deep Mathematical Analysis"
)
# Pattern detection sensitivity
pattern_sensitivity = gr.Slider(
label="🎯 Pattern Sensitivity",
minimum=0.1, maximum=1.0, step=0.05, value=0.5,
info="Threshold for detecting geometric patterns"
)
# Information Analysis Panels
with gr.Accordion("📊 **Vocalization Analysis**", open=True):
primary_info_html = gr.HTML(
label="🎵 Primary Vocalization Analysis",
value="<i>Select a primary vocalization to see detailed CMT analysis</i>"
)
neighbor_info_html = gr.HTML(
label="🔗 Neighbor Vocalization Analysis",
value="<i>Cross-species neighbor will be automatically detected</i>"
)
# Audio Players with Enhanced Controls
with gr.Accordion("🔊 **Audio Playback & Analysis**", open=False):
with gr.Row():
primary_audio_out = gr.Audio(
label="🎵 Primary Audio",
show_download_button=True
)
neighbor_audio_out = gr.Audio(
label="🔗 Neighbor Audio",
show_download_button=True
)
# Audio analysis metrics
audio_metrics_html = gr.HTML(
label="📈 Audio Signal Metrics",
value="<i>Play audio files to see signal analysis</i>"
)
# Main Visualization Panel
with gr.Column(scale=3):
# Enhanced Holographic Visualization
with gr.Accordion("🌌 **Holographic Field Visualization**", open=True):
dual_holography_plot = gr.Plot(
label="🔬 Side-by-Side Holographic Field Reconstruction"
)
# Advanced visualization controls
with gr.Row():
view_mode = gr.Dropdown(
label="👁️ Visualization Mode",
choices=["Side-by-Side", "Overlay", "Difference", "Animation"],
value="Side-by-Side",
info="Different ways to compare holographic fields"
)
colormap_selection = gr.Dropdown(
label="🎨 Color Mapping",
choices=["Wavelength", "Phase", "Magnitude", "Interference", "Custom"],
value="Wavelength",
info="Color encoding for holographic visualization"
)
# Diagnostic and Analysis Plots
with gr.Accordion("🔍 **Mathematical Diagnostics**", open=True):
dual_diagnostic_plot = gr.Plot(
label="📊 Cross-Species Mathematical Diagnostics"
)
# Additional analysis plots
with gr.Row():
entropy_plot = gr.Plot(
label="📈 Information Entropy Geometry"
)
phase_plot = gr.Plot(
label="🌀 Phase Space Analysis"
)
# Mathematical Insights Panel
with gr.Accordion("🧮 **Mathematical Insights & Metrics**", open=True):
with gr.Row():
with gr.Column():
mathematical_metrics = gr.HTML(
label="📐 Geometric Properties",
value="<i>Mathematical analysis will appear here</i>"
)
with gr.Column():
pattern_analysis = gr.HTML(
label="🔍 Pattern Recognition",
value="<i>Detected patterns and structures</i>"
)
with gr.Column():
cross_species_insights = gr.HTML(
label="🌉 Cross-Species Insights",
value="<i>Grammar mapping and communication bridges</i>"
)
# Export and Analysis Tools
with gr.Accordion("💾 **Export & Advanced Analysis**", open=False):
with gr.Row():
export_hologram = gr.Button("💾 Export Holographic Data", variant="secondary")
export_analysis = gr.Button("📊 Export Mathematical Analysis", variant="secondary")
generate_report = gr.Button("📝 Generate Full Report", variant="primary")
export_status = gr.HTML(
label="📋 Export Status",
value="<i>Ready to export holographic analysis data</i>"
)
def update_file_choices(species):
"""Update the primary file dropdown based on selected species."""
species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist()
return species_files
def update_enhanced_cross_species_view(species, primary_file, neighbor_file, lens, resolution,
field_depth, wavelength, interference_strength, encoding_mode,
phase_modulation, magnitude_scaling, auto_detect_patterns,
live_updates, analysis_depth, pattern_sensitivity,
view_mode, colormap_selection):
if not primary_file:
empty_fig = go.Figure(layout={"title": "Please select a primary file."})
return empty_fig, empty_fig, "", "", None, None
# Get primary row
primary_row = df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == primary_file) &
(df_combined["source"] == species)
]) > 0 else None
if primary_row is None:
empty_fig = go.Figure(layout={"title": "Primary file not found."})
return empty_fig, empty_fig, "", "", None, None, []
# Find cross-species neighbor if not manually selected
if not neighbor_file:
neighbor_row = find_nearest_cross_species_neighbor(primary_row, df_combined)
if neighbor_row is not None:
neighbor_file = neighbor_row['filepath']
else:
# Get manually selected neighbor
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_row = df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
].iloc[0] if len(df_combined[
(df_combined["filepath"] == neighbor_file) &
(df_combined["source"] == opposite_species)
]) > 0 else None
# Get CMT data directly from CSV (no audio processing needed!)
print(f"📊 Using preprocessed CMT data for: {primary_row['filepath']} ({lens} lens)")
primary_cmt = get_cmt_data_from_csv(primary_row, lens)
neighbor_cmt = None
if neighbor_row is not None:
print(f"📊 Using preprocessed CMT data for: {neighbor_row['filepath']} ({lens} lens)")
neighbor_cmt = get_cmt_data_from_csv(neighbor_row, lens)
# Get audio file paths only for playback
primary_fp = resolve_audio_path(primary_row)
neighbor_fp = resolve_audio_path(neighbor_row) if neighbor_row is not None else None
# Create enhanced visualizations with new parameters
if primary_cmt and neighbor_cmt:
primary_title = f"{species}: {primary_row.get('label', 'Unknown')}"
neighbor_title = f"{neighbor_row['source']}: {neighbor_row.get('label', 'Unknown')}"
# Enhanced holographic visualization with multiple view modes
dual_holo_fig = create_dual_holography_plot(
primary_cmt["z"], primary_cmt["phi"],
neighbor_cmt["z"], neighbor_cmt["phi"],
resolution, wavelength, field_depth,
interference_strength, view_mode, colormap_selection,
primary_title, neighbor_title
)
# Enhanced diagnostic plots
dual_diag_fig = create_dual_diagnostic_plots(
primary_cmt["z"], primary_cmt["w"],
neighbor_cmt["z"], neighbor_cmt["w"],
primary_title, neighbor_title
)
# New enhanced analysis plots
entropy_fig = create_enhanced_entropy_plot(
primary_cmt["phi"], neighbor_cmt["phi"],
primary_title, neighbor_title
)
phase_fig = create_enhanced_phase_analysis(
primary_cmt["phi"], neighbor_cmt["phi"],
primary_cmt["z"], neighbor_cmt["z"],
primary_title, neighbor_title
)
else:
dual_holo_fig = go.Figure(layout={"title": "Error processing audio files"})
dual_diag_fig = go.Figure(layout={"title": "Error processing audio files"})
entropy_fig = go.Figure(layout={"title": "Error processing audio files"})
phase_fig = go.Figure(layout={"title": "Error processing audio files"})
# Build info strings with CMT diagnostic values
primary_info = f"""
<b>Primary:</b> {primary_row['filepath']}<br>
<b>Species:</b> {primary_row['source']}<br>
<b>Label:</b> {primary_row.get('label', 'N/A')}<br>
<b>CMT α-{lens}:</b> {primary_cmt['alpha']:.4f}<br>
<b>CMT SRL-{lens}:</b> {primary_cmt['srl']:.4f}<br>
<b>Field Points:</b> {primary_cmt['final_count'] if primary_cmt else 0}
"""
neighbor_info = ""
if neighbor_row is not None:
neighbor_info = f"""
<b>Neighbor:</b> {neighbor_row['filepath']}<br>
<b>Species:</b> {neighbor_row['source']}<br>
<b>Label:</b> {neighbor_row.get('label', 'N/A')}<br>
<b>CMT α-{lens}:</b> {neighbor_cmt['alpha']:.4f}<br>
<b>CMT SRL-{lens}:</b> {neighbor_cmt['srl']:.4f}<br>
<b>Field Points:</b> {neighbor_cmt['final_count'] if neighbor_cmt else 0}
"""
# Update neighbor dropdown choices
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_choices = df_combined[df_combined["source"] == opposite_species]["filepath"].astype(str).tolist()
# Audio files
primary_audio = primary_fp if primary_fp and os.path.exists(primary_fp) else None
neighbor_audio = neighbor_fp if neighbor_row is not None and neighbor_fp and os.path.exists(neighbor_fp) else None
# Calculate mathematical insights and similarity metrics
if primary_cmt and neighbor_cmt:
# Geometric similarity calculation
primary_centroid = np.mean(primary_cmt["phi"])
neighbor_centroid = np.mean(neighbor_cmt["phi"])
geometric_distance = np.abs(primary_centroid - neighbor_centroid)
# Pattern coherence analysis
primary_coherence = np.std(np.abs(primary_cmt["phi"])) / (np.mean(np.abs(primary_cmt["phi"])) + 1e-12)
neighbor_coherence = np.std(np.abs(neighbor_cmt["phi"])) / (np.mean(np.abs(neighbor_cmt["phi"])) + 1e-12)
coherence_similarity = 1.0 / (1.0 + abs(primary_coherence - neighbor_coherence))
# Cross-species communication bridge analysis
phase_correlation = np.corrcoef(np.angle(primary_cmt["phi"]), np.angle(neighbor_cmt["phi"]))[0,1]
if np.isnan(phase_correlation):
phase_correlation = 0.0
bridge_strength = (coherence_similarity + abs(phase_correlation)) / 2.0
# Enhanced similarity info
similarity_details = f"""
<h4>🧮 <b>Geometric Similarity Metrics</b></h4>
<div style="background: rgba(20,20,40,0.8); padding: 10px; border-radius: 8px; margin: 5px 0;">
<p><b>🎯 Geometric Distance:</b> {geometric_distance:.4f}</p>
<p><b>📊 Coherence Similarity:</b> {coherence_similarity:.4f}</p>
<p><b>🌊 Phase Correlation:</b> {phase_correlation:.4f}</p>
<p><b>🌉 Communication Bridge:</b> {bridge_strength:.4f}</p>
<p><b>📈 Pattern Match:</b> {(1.0 - geometric_distance) * 100:.1f}%</p>
</div>
"""
# Mathematical insights
math_insights = f"""
<h4>📐 <b>Mathematical Properties</b></h4>
<div style="background: rgba(40,20,20,0.8); padding: 10px; border-radius: 8px; margin: 5px 0;">
<p><b>🎵 {primary_title}:</b></p>
<p>• Field Complexity: {primary_cmt['alpha']:.4f}</p>
<p>• SRL Resonance: {primary_cmt['srl']:.4f}</p>
<p>• Coherence Index: {primary_coherence:.4f}</p>
<br>
<p><b>🔗 {neighbor_title}:</b></p>
<p>• Field Complexity: {neighbor_cmt['alpha']:.4f}</p>
<p>• SRL Resonance: {neighbor_cmt['srl']:.4f}</p>
<p>• Coherence Index: {neighbor_coherence:.4f}</p>
</div>
"""
# Cross-species insights based on mathematical analysis
if bridge_strength > 0.7:
bridge_quality = "🟢 <b>Strong Communication Bridge</b>"
bridge_description = "High geometric similarity suggests potential shared communication patterns."
elif bridge_strength > 0.4:
bridge_quality = "🟡 <b>Moderate Communication Bridge</b>"
bridge_description = "Some shared mathematical structures detected."
else:
bridge_quality = "🔴 <b>Weak Communication Bridge</b>"
bridge_description = "Limited mathematical correspondence between vocalizations."
cross_species_analysis = f"""
<h4>🌉 <b>Cross-Species Grammar Mapping</b></h4>
<div style="background: rgba(20,40,20,0.8); padding: 10px; border-radius: 8px; margin: 5px 0;">
<p>{bridge_quality}</p>
<p>{bridge_description}</p>
<br>
<p><b>🔍 Pattern Analysis:</b></p>
<p>• Encoding Mode: {encoding_mode}</p>
<p>• Analysis Depth: Level {analysis_depth}</p>
<p>• Detection Sensitivity: {pattern_sensitivity:.2f}</p>
{"<p>• 🔴 <b>Patterns Detected!</b></p>" if auto_detect_patterns and bridge_strength > pattern_sensitivity else ""}
</div>
"""
# Audio metrics
audio_analysis = f"""
<h4>📈 <b>Signal Analysis</b></h4>
<div style="background: rgba(40,40,20,0.8); padding: 10px; border-radius: 8px; margin: 5px 0;">
<p><b>🎵 Primary Signal:</b> {len(primary_cmt['phi'])} samples</p>
<p><b>🔗 Neighbor Signal:</b> {len(neighbor_cmt['phi'])} samples</p>
<p><b>📐 Lens Function:</b> {lens.upper()} (Mathematical Illumination)</p>
<p><b>🌈 Wavelength:</b> {wavelength}nm</p>
<p><b>⚡ Interference:</b> {interference_strength:.1f}x</p>
<p><b>📏 Field Depth:</b> {field_depth} layers</p>
</div>
"""
else:
similarity_details = "<i>Select vocalizations to see similarity analysis</i>"
math_insights = "<i>Mathematical analysis will appear here</i>"
cross_species_analysis = "<i>Cross-species insights will appear here</i>"
audio_analysis = "<i>Audio signal analysis will appear here</i>"
return (dual_holo_fig, dual_diag_fig, entropy_fig, phase_fig,
primary_info, neighbor_info, similarity_details,
math_insights, cross_species_analysis, audio_analysis,
primary_audio, neighbor_audio)
# Event handlers
def update_dropdowns_on_species_change(species):
"""Update both primary and neighbor dropdowns when species changes."""
species_files = df_combined[df_combined["source"] == species]["filepath"].astype(str).tolist()
opposite_species = 'Human' if species == 'Dog' else 'Dog'
neighbor_files = df_combined[df_combined["source"] == opposite_species]["filepath"].astype(str).tolist()
primary_value = species_files[0] if species_files else ""
neighbor_value = neighbor_files[0] if neighbor_files else ""
return (
gr.Dropdown(choices=species_files, value=primary_value),
gr.Dropdown(choices=neighbor_files, value=neighbor_value)
)
species_dropdown.change(
update_dropdowns_on_species_change,
inputs=[species_dropdown],
outputs=[primary_dropdown, neighbor_dropdown]
)
# Enhanced input/output configuration with all new parameters
enhanced_inputs = [
species_dropdown, primary_dropdown, neighbor_dropdown,
holo_lens_dropdown, holo_resolution_slider, field_depth_slider,
holo_wavelength_slider, interference_strength, encoding_mode,
phase_modulation, magnitude_scaling, auto_detect_patterns,
live_updates, analysis_depth, pattern_sensitivity,
view_mode, colormap_selection
]
enhanced_outputs = [
dual_holography_plot, dual_diagnostic_plot, entropy_plot, phase_plot,
primary_info_html, neighbor_info_html, similarity_info,
mathematical_metrics, pattern_analysis, cross_species_insights,
audio_metrics_html, primary_audio_out, neighbor_audio_out
]
# Bind all enhanced controls to the new update function
for component in enhanced_inputs[2:]: # Skip species and primary (handled separately)
component.change(
update_enhanced_cross_species_view,
inputs=enhanced_inputs,
outputs=enhanced_outputs
)
if __name__ == "__main__":
demo.launch(share=True, debug=True)