|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_id = "your-username/lora-plant-deepseek" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") |
|
|
|
def plant_ask(user_input): |
|
prompt = f"用户提问:{user_input}\n请用人性化语言回答,并建议一些可查阅的植物文献资料。\n回答:" |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=300) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
iface = gr.Interface( |
|
fn=plant_ask, |
|
inputs="text", |
|
outputs="text", |
|
title="🌱 植物助手问答系统", |
|
description="欢迎提问关于植物养护、生长环境、病虫害防治等问题,我会尽力给出人性化建议和文献推荐。", |
|
) |
|
|
|
iface.launch() |
|
|