000 / app.py
Seunggg's picture
Update app.py
fd45282 verified
raw
history blame
955 Bytes
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "your-username/lora-plant-deepseek"
# 加载模型
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
def plant_ask(user_input):
prompt = f"用户提问:{user_input}\n请用人性化语言回答,并建议一些可查阅的植物文献资料。\n回答:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=300)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
iface = gr.Interface(
fn=plant_ask,
inputs="text",
outputs="text",
title="🌱 植物助手问答系统",
description="欢迎提问关于植物养护、生长环境、病虫害防治等问题,我会尽力给出人性化建议和文献推荐。",
)
iface.launch()