import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "your-username/lora-plant-deepseek" # 加载模型 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") def plant_ask(user_input): prompt = f"用户提问:{user_input}\n请用人性化语言回答,并建议一些可查阅的植物文献资料。\n回答:" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=300) return tokenizer.decode(outputs[0], skip_special_tokens=True) iface = gr.Interface( fn=plant_ask, inputs="text", outputs="text", title="🌱 植物助手问答系统", description="欢迎提问关于植物养护、生长环境、病虫害防治等问题,我会尽力给出人性化建议和文献推荐。", ) iface.launch()