meghsn's picture
Rename results/GenericAgent-AgentTrek-1.0-32b/readme.md to results/GenericAgent-AgentTrek-1.0-32b/README.md
6d59540 verified

GenericAgent-AgentTrek-1.0-32b

this agent is GenericAgent from Agentlab

  • Base Model:

    • Qwen/Qwen2.5-32B-Instruct
  • Architecture:

    • Type: Causal Language Models
    • Training Stage: Pretraining & Post-training
    • Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
    • Number of Parameters: 32.5B
    • Number of Paramaters (Non-Embedding): 31.0B
    • Number of Layers: 64
    • Number of Attention Heads (GQA): 40 for Q and 8 for KV
  • Input/Output Format:

    • with the following flags:
      flags=GenericPromptFlags(
          obs=ObsFlags(
              use_html=True,
              use_ax_tree=True,
              use_tabs=False,
              use_focused_element=False,
              use_error_logs=True,
              use_history=True,
              use_past_error_logs=False,
              use_action_history=True,
              use_think_history=False,
              use_diff=False,
              html_type='pruned_html',
              use_screenshot=False,
              use_som=False,
              extract_visible_tag=False,
              extract_clickable_tag=False,
              extract_coords='False',
              filter_visible_elements_only=False,
              openai_vision_detail='auto',
              filter_with_bid_only=False,
              filter_som_only=False
          ),
          action=ActionFlags(
              action_set=HighLevelActionSetArgs(
                  subsets=('miniwob_all',),
                  multiaction=False,
                  strict=False,
                  retry_with_force=True,
                  demo_mode='off'
              ),
              long_description=False,
              individual_examples=False,
              multi_actions=None,
              is_strict=None
          ),
          use_plan=False,
          use_criticise=False,
          use_thinking=True,
          use_memory=True,
          use_concrete_example=True,
          use_abstract_example=True,
          use_hints=False,
          enable_chat=False,
          max_prompt_tokens=40000,
          be_cautious=True,
          extra_instructions=None,
          add_missparsed_messages=True,
          max_trunc_itr=20,
          flag_group=None
      )
      
  • Training Details

    • Dataset used: AgentTrek-6K
    • Number of training steps: 3 Epochs
  • Paper Link:

  • Code Repository:

  • Lisense:

    • apache2.0