Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,233 Bytes
d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 9e5c77b 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 9e5c77b d83ac8a 9e5c77b d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 9e5c77b d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 d83ac8a 7b7a9c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import spaces
import gc
import gradio as gr
import numpy as np
import os
from pathlib import Path
from diffusers import GGUFQuantizationConfig, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
import torch
gc.collect()
torch.cuda.empty_cache()
torch.set_grad_enabled(False)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
model_id = "hunyuanvideo-community/HunyuanVideo"
base_path = f"/home/user/app/{model_id}"
os.makedirs(base_path, exist_ok=True)
snapshot_download(repo_id=model_id, local_dir=base_path)
ckp_path = Path(base_path)
gguf_filename = "hunyuan-video-t2v-720p-Q4_0.gguf"
transformer_path = f"https://huggingface.co/city96/HunyuanVideo-gguf/blob/main/{gguf_filename}"
transformer = HunyuanVideoTransformer3DModel.from_single_file(
transformer_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)
transformer = transformer.to('cuda')
pipe = HunyuanVideoPipeline.from_pretrained(
ckp_path,
transformer=transformer,
torch_dtype=torch.float16
)
if pipe.text_encoder:
pipe.text_encoder = pipe.text_encoder.to('cuda')
pipe.text_encoder.eval()
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.vae.eval()
pipe.vae = pipe.vae.to("cuda")
pipe = pipe.to("cuda")
pipe.load_lora_weights(
"sergidev/IllustrationTTV",
weight_name="hunyuan_flat_color_v2.safetensors",
adapter_name="hyvid_lora_adapter"
)
pipe.set_adapters("hyvid_lora_adapter", 1.2)
gc.collect()
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=120)
def generate(
prompt,
height,
width,
num_frames,
num_inference_steps,
seed_value,
fps,
progress=gr.Progress(track_tqdm=True)
):
with torch.cuda.device(0):
if seed_value == -1:
seed_value = torch.randint(0, MAX_SEED, (1,)).item()
generator = torch.Generator('cuda').manual_seed(seed_value)
with torch.amp.autocast_mode.autocast('cuda', dtype=torch.bfloat16), torch.inference_mode(), torch.no_grad():
output = pipe(
prompt=prompt,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
generator=generator,
).frames[0]
output_path = "output.mp4"
export_to_video(output, output_path, fps=fps)
torch.cuda.empty_cache()
gc.collect()
return output_path
def apply_preset(preset_name, *current_values):
if preset_name == "Higher Resolution":
return [608, 448, 24, 29, 12]
elif preset_name == "More Frames":
return [512, 320, 42, 27, 14]
return current_values
css = """
#col-container {
margin: 0 auto;
max-width: 850px;
}
.dark-theme {
background-color: #1f1f1f;
color: #ffffff;
}
.container {
margin: 0 auto;
padding: 20px;
border-radius: 10px;
background-color: #2d2d2d;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.title {
text-align: center;
margin-bottom: 1em;
color: #ffffff;
}
.description {
text-align: center;
margin-bottom: 2em;
color: #cccccc;
font-size: 0.95em;
line-height: 1.5;
}
.prompt-container {
background-color: #363636;
padding: 15px;
border-radius: 8px;
margin-bottom: 1em;
width: 100%;
}
.prompt-textbox {
min-height: 80px !important;
}
.preset-buttons {
display: flex;
gap: 10px;
justify-content: center;
margin-bottom: 1em;
}
.support-text {
text-align: center;
margin-top: 1em;
color: #cccccc;
font-size: 0.9em;
}
a {
color: #00a7e1;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
"""
with gr.Blocks(css=css, theme="dark") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🎬 Illustration TTV", elem_classes=["title"])
gr.Markdown(
"""Transform your text descriptions into illustrative videos using HunyuanVideo for free!
This space uses the 'hunyuan flat color v2' LORA by Motimalu to generate better 2d animated sequences. Prompt only handles 77 tokens.
If you find this useful, please consider giving the space a ❤️ and supporting me on [Ko-Fi](https://ko-fi.com/sergidev)!""",
elem_classes=["description"]
)
with gr.Column(elem_classes=["prompt-container"]):
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here (Include the terms 'flat color, no lineart, blending' for 2d illustration)",
show_label=False,
elem_classes=["prompt-textbox"],
lines=3
)
with gr.Row():
run_button = gr.Button("🎨 Generate", variant="primary", size="lg")
with gr.Row(elem_classes=["preset-buttons"]):
preset_high_res = gr.Button("📺 Higher Resolution Preset")
preset_more_frames = gr.Button("🎞️ More Frames Preset")
with gr.Row():
result = gr.Video(label="Generated Video")
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(
label="Seed (-1 for random)",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=608,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=448,
)
with gr.Row():
num_frames = gr.Slider(
label="Number of frames to generate",
minimum=1.0,
maximum=257.0,
step=1,
value=24,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=29,
)
fps = gr.Slider(
label="Frames per second",
minimum=1,
maximum=60,
step=1,
value=12,
)
# Event handling
run_button.click(
fn=generate,
inputs=[prompt, height, width, num_frames, num_inference_steps, seed, fps],
outputs=[result],
)
# Preset button handlers
preset_high_res.click(
fn=lambda: apply_preset("Higher Resolution"),
outputs=[height, width, num_frames, num_inference_steps, fps]
)
preset_more_frames.click(
fn=lambda: apply_preset("More Frames"),
outputs=[height, width, num_frames, num_inference_steps, fps]
)
|