Spaces:
Running
on
Zero
Running
on
Zero
v1
Browse files- README.md +2 -2
- app.py +7 -0
- demo_app.py +230 -0
- packages.txt +4 -0
- requirements.txt +48 -0
- utils.py +40 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Anime TextToVideo
|
3 |
-
emoji:
|
4 |
colorFrom: pink
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.16.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Anime TextToVideo
|
3 |
+
emoji: ✨
|
4 |
colorFrom: pink
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.16.0
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils import install_packages
|
2 |
+
|
3 |
+
if __name__ == "__main__":
|
4 |
+
install_packages()
|
5 |
+
|
6 |
+
from demo_app import demo
|
7 |
+
demo.queue(max_size=20).launch()
|
demo_app.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gc
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
from diffusers import GGUFQuantizationConfig, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
|
8 |
+
from diffusers.utils import export_to_video
|
9 |
+
from huggingface_hub import snapshot_download
|
10 |
+
import torch
|
11 |
+
|
12 |
+
gc.collect()
|
13 |
+
torch.cuda.empty_cache()
|
14 |
+
torch.set_grad_enabled(False)
|
15 |
+
torch.backends.cudnn.deterministic = True
|
16 |
+
torch.backends.cudnn.benchmark = False
|
17 |
+
|
18 |
+
model_id = "hunyuanvideo-community/HunyuanVideo"
|
19 |
+
base_path = f"/home/user/app/{model_id}"
|
20 |
+
os.makedirs(base_path, exist_ok=True)
|
21 |
+
snapshot_download(repo_id=model_id, local_dir=base_path)
|
22 |
+
ckp_path = Path(base_path)
|
23 |
+
|
24 |
+
gguf_filename = "hunyuan-video-t2v-720p-Q4_0.gguf"
|
25 |
+
transformer_path = f"https://huggingface.co/city96/HunyuanVideo-gguf/blob/main/{gguf_filename}"
|
26 |
+
transformer = HunyuanVideoTransformer3DModel.from_single_file(
|
27 |
+
transformer_path,
|
28 |
+
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
|
29 |
+
torch_dtype=torch.bfloat16,
|
30 |
+
)
|
31 |
+
transformer = transformer.to('cuda')
|
32 |
+
|
33 |
+
pipe = HunyuanVideoPipeline.from_pretrained(
|
34 |
+
ckp_path,
|
35 |
+
transformer=transformer,
|
36 |
+
torch_dtype=torch.float16
|
37 |
+
)
|
38 |
+
|
39 |
+
if pipe.text_encoder:
|
40 |
+
pipe.text_encoder = pipe.text_encoder.to('cuda')
|
41 |
+
pipe.text_encoder.eval()
|
42 |
+
|
43 |
+
pipe.vae.enable_tiling()
|
44 |
+
pipe.vae.enable_slicing()
|
45 |
+
pipe.vae.eval()
|
46 |
+
pipe.vae = pipe.vae.to("cuda")
|
47 |
+
pipe = pipe.to("cuda")
|
48 |
+
|
49 |
+
pipe.load_lora_weights(
|
50 |
+
"calcuis/hyvid",
|
51 |
+
weight_name="hyvid-lora-mila3d.safetensors",
|
52 |
+
adapter_name="hyvid_lora_adapter"
|
53 |
+
)
|
54 |
+
pipe.set_adapters("hyvid_lora_adapter", 1.2)
|
55 |
+
|
56 |
+
gc.collect()
|
57 |
+
torch.cuda.empty_cache()
|
58 |
+
|
59 |
+
MAX_SEED = np.iinfo(np.int32).max
|
60 |
+
MAX_IMAGE_SIZE = 1024
|
61 |
+
|
62 |
+
@spaces.GPU(duration=120) # Adjusted duration to 120
|
63 |
+
def generate(
|
64 |
+
prompt,
|
65 |
+
height,
|
66 |
+
width,
|
67 |
+
num_frames,
|
68 |
+
num_inference_steps,
|
69 |
+
seed_value,
|
70 |
+
fps,
|
71 |
+
progress=gr.Progress(track_tqdm=True)
|
72 |
+
):
|
73 |
+
with torch.cuda.device(0):
|
74 |
+
if seed_value == -1:
|
75 |
+
seed_value = torch.randint(0, MAX_SEED, (1,)).item()
|
76 |
+
generator = torch.Generator('cuda').manual_seed(seed_value)
|
77 |
+
|
78 |
+
with torch.amp.autocast_mode.autocast('cuda', dtype=torch.bfloat16), torch.inference_mode(), torch.no_grad():
|
79 |
+
output = pipe(
|
80 |
+
prompt=prompt,
|
81 |
+
height=height,
|
82 |
+
width=width,
|
83 |
+
num_frames=num_frames,
|
84 |
+
num_inference_steps=num_inference_steps,
|
85 |
+
generator=generator,
|
86 |
+
).frames[0]
|
87 |
+
|
88 |
+
output_path = "output.mp4"
|
89 |
+
export_to_video(output, output_path, fps=fps) # Use user-defined fps
|
90 |
+
torch.cuda.empty_cache()
|
91 |
+
gc.collect()
|
92 |
+
return output_path
|
93 |
+
|
94 |
+
|
95 |
+
# Gradio Interface
|
96 |
+
css = """
|
97 |
+
#col-container {
|
98 |
+
margin: 0 auto;
|
99 |
+
max-width: 850px;
|
100 |
+
}
|
101 |
+
|
102 |
+
.dark-theme {
|
103 |
+
background-color: #1f1f1f;
|
104 |
+
color: #ffffff;
|
105 |
+
}
|
106 |
+
|
107 |
+
.container {
|
108 |
+
margin: 0 auto;
|
109 |
+
padding: 20px;
|
110 |
+
border-radius: 10px;
|
111 |
+
background-color: #2d2d2d;
|
112 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
113 |
+
}
|
114 |
+
|
115 |
+
.title {
|
116 |
+
text-align: center;
|
117 |
+
margin-bottom: 1em;
|
118 |
+
color: #ffffff;
|
119 |
+
}
|
120 |
+
|
121 |
+
.description {
|
122 |
+
text-align: center;
|
123 |
+
margin-bottom: 2em;
|
124 |
+
color: #cccccc;
|
125 |
+
font-size: 0.95em;
|
126 |
+
line-height: 1.5;
|
127 |
+
}
|
128 |
+
|
129 |
+
.prompt-container {
|
130 |
+
background-color: #363636;
|
131 |
+
padding: 15px;
|
132 |
+
border-radius: 8px;
|
133 |
+
margin-bottom: 1em;
|
134 |
+
}
|
135 |
+
|
136 |
+
.support-text {
|
137 |
+
text-align: center;
|
138 |
+
margin-top: 1em;
|
139 |
+
color: #cccccc;
|
140 |
+
font-size: 0.9em;
|
141 |
+
}
|
142 |
+
|
143 |
+
a {
|
144 |
+
color: #00a7e1;
|
145 |
+
text-decoration: none;
|
146 |
+
}
|
147 |
+
|
148 |
+
a:hover {
|
149 |
+
text-decoration: underline;
|
150 |
+
}
|
151 |
+
"""
|
152 |
+
|
153 |
+
with gr.Blocks(css=css, theme="dark") as demo:
|
154 |
+
with gr.Column(elem_id="col-container"):
|
155 |
+
gr.Markdown("# 🎬 Anime TTV", elem_classes=["title"])
|
156 |
+
gr.Markdown(
|
157 |
+
"""Transform your text descriptions into anime-style videos using state-of-the-art AI technology.
|
158 |
+
This space uses the HunyuanVideo model to generate high-quality animated sequences.
|
159 |
+
|
160 |
+
If you find this useful, please consider ❤️ hearting the space and supporting me on [Ko-Fi](https://ko-fi.com/sergidev)!""",
|
161 |
+
elem_classes=["description"]
|
162 |
+
)
|
163 |
+
|
164 |
+
with gr.Row(elem_classes=["prompt-container"]):
|
165 |
+
prompt = gr.Text(
|
166 |
+
label="Prompt",
|
167 |
+
placeholder="Enter your prompt here (e.g., 'a cute anime girl walking in a garden')",
|
168 |
+
show_label=False,
|
169 |
+
)
|
170 |
+
run_button = gr.Button("🎨 Generate", variant="primary")
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
result = gr.Video(label="Generated Video")
|
174 |
+
|
175 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
176 |
+
seed = gr.Slider(
|
177 |
+
label="Seed (-1 for random)",
|
178 |
+
minimum=-1,
|
179 |
+
maximum=MAX_SEED,
|
180 |
+
step=1,
|
181 |
+
value=-1,
|
182 |
+
)
|
183 |
+
with gr.Row():
|
184 |
+
height = gr.Slider( # Fixed order of height and width to match intended use
|
185 |
+
label="Height",
|
186 |
+
minimum=256,
|
187 |
+
maximum=MAX_IMAGE_SIZE,
|
188 |
+
step=16, # Make divisible by 16
|
189 |
+
value=512,
|
190 |
+
)
|
191 |
+
width = gr.Slider(
|
192 |
+
label="Width",
|
193 |
+
minimum=256,
|
194 |
+
maximum=MAX_IMAGE_SIZE,
|
195 |
+
step=16,
|
196 |
+
value=320,
|
197 |
+
)
|
198 |
+
with gr.Row():
|
199 |
+
num_frames = gr.Slider(
|
200 |
+
label="Number of frames to generate",
|
201 |
+
minimum=1.0,
|
202 |
+
maximum=257.0,
|
203 |
+
step=1,
|
204 |
+
value=42,
|
205 |
+
)
|
206 |
+
num_inference_steps = gr.Slider(
|
207 |
+
label="Number of inference steps",
|
208 |
+
minimum=1,
|
209 |
+
maximum=50,
|
210 |
+
step=1,
|
211 |
+
value=30,
|
212 |
+
)
|
213 |
+
fps = gr.Slider(
|
214 |
+
label="Frames per second",
|
215 |
+
minimum=1,
|
216 |
+
maximum=60,
|
217 |
+
step=1,
|
218 |
+
value=14,
|
219 |
+
)
|
220 |
+
|
221 |
+
# Event handling
|
222 |
+
run_button.click(
|
223 |
+
fn=generate,
|
224 |
+
inputs=[prompt, height, width, num_frames, num_inference_steps, seed, fps],
|
225 |
+
# Added fps to inputs, fixed height/width order
|
226 |
+
outputs=[result],
|
227 |
+
)
|
228 |
+
|
229 |
+
|
230 |
+
# The demo.queue and demo.launch are handled in app.py
|
packages.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
python3-imageio
|
3 |
+
cmake
|
4 |
+
libstdc++6
|
requirements.txt
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu124
|
2 |
+
bitsandbytes
|
3 |
+
decord
|
4 |
+
einops
|
5 |
+
facexlib
|
6 |
+
ftfy
|
7 |
+
gguf
|
8 |
+
git+https://github.com/huggingface/accelerate.git@main#egg=accelerate
|
9 |
+
git+https://github.com/huggingface/diffusers.git@main#egg=diffusers
|
10 |
+
git+https://github.com/huggingface/transformers.git@main#egg=transformers
|
11 |
+
gradio
|
12 |
+
hf_transfer
|
13 |
+
huggingface_hub
|
14 |
+
imageio
|
15 |
+
imageio-ffmpeg
|
16 |
+
insightface
|
17 |
+
invisible_watermark
|
18 |
+
matplotlib
|
19 |
+
moviepy==1.0.3
|
20 |
+
numpy<2.0
|
21 |
+
onnxruntime
|
22 |
+
onnxruntime-gpu
|
23 |
+
omegaconf
|
24 |
+
opencv-python
|
25 |
+
opencv-python-headless
|
26 |
+
git+https://github.com/huggingface/optimum-quanto
|
27 |
+
packaging
|
28 |
+
patch_conv
|
29 |
+
Pillow==10.2.0
|
30 |
+
psutil
|
31 |
+
safetensors
|
32 |
+
scipy
|
33 |
+
scikit-learn
|
34 |
+
scikit-image
|
35 |
+
scikit-video
|
36 |
+
sentencepiece
|
37 |
+
setuptools
|
38 |
+
spaces
|
39 |
+
timm
|
40 |
+
tokenizers>=0.13.3
|
41 |
+
torch<2.6.0,>=2.4.0
|
42 |
+
torchao
|
43 |
+
torchaudio
|
44 |
+
torchsde
|
45 |
+
torchvision
|
46 |
+
tqdm
|
47 |
+
wheel
|
48 |
+
git+https://github.com/huggingface/peft.git
|
utils.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def install_packages():
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
+
import importlib
|
5 |
+
|
6 |
+
def _is_package_available(name) -> bool:
|
7 |
+
try:
|
8 |
+
importlib.import_module(name)
|
9 |
+
return True
|
10 |
+
except (ImportError, ModuleNotFoundError):
|
11 |
+
return False
|
12 |
+
|
13 |
+
# upgrade pip
|
14 |
+
subprocess.run(
|
15 |
+
f"{sys.executable} -m pip install --upgrade pip", shell=True, check=True
|
16 |
+
)
|
17 |
+
subprocess.run(
|
18 |
+
f"{sys.executable} -m pip install --upgrade ninja wheel setuptools packaging", shell=True, check=True
|
19 |
+
)
|
20 |
+
|
21 |
+
# install ninja
|
22 |
+
if not _is_package_available("ninja"):
|
23 |
+
subprocess.run(f"{sys.executable} -m pip install ninja nvidia-cudnn-cu12==9.1.0.70 nvidia-cublas-cu12==12.4.5.8 torch==2.5.1 --extra-index-url https://download.pytorch.org/whl/cu124", shell=True, check=True)
|
24 |
+
|
25 |
+
# install flash attention
|
26 |
+
if not _is_package_available("flash_attn"):
|
27 |
+
subprocess.run(
|
28 |
+
f"{sys.executable} -m pip install -v -U flash-attention --no-build-isolation",
|
29 |
+
env={"MAX_JOBS": "1"},
|
30 |
+
shell=True,
|
31 |
+
check=True
|
32 |
+
)
|
33 |
+
|
34 |
+
# install xformers
|
35 |
+
if not _is_package_available("xformers"):
|
36 |
+
subprocess.run(
|
37 |
+
f"{sys.executable} -m pip install -v -U xformers nvidia-cudnn-cu12==9.1.0.70 nvidia-cublas-cu12==12.4.5.8 torch==2.5.1 --extra-index-url https://download.pytorch.org/whl/cu124",
|
38 |
+
shell=True,
|
39 |
+
check=True
|
40 |
+
)
|