Huanyan-Studio / demo_app.py
Sergidev's picture
v2 p3
0250a5e
raw
history blame
10.7 kB
import spaces
import gc
import gradio as gr
import numpy as np
import os
from pathlib import Path
from diffusers import GGUFQuantizationConfig, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
import torch
from PIL import Image
# Configuration
gc.collect()
torch.cuda.empty_cache()
torch.set_grad_enabled(False)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Load base model
model_id = "hunyuanvideo-community/HunyuanVideo"
base_path = f"/home/user/app/{model_id}"
os.makedirs(base_path, exist_ok=True)
snapshot_download(repo_id=model_id, local_dir=base_path)
# Load transformer
ckp_path = Path(base_path)
gguf_filename = "hunyuan-video-t2v-720p-Q4_0.gguf"
transformer_path = f"https://huggingface.co/city96/HunyuanVideo-gguf/blob/main/{gguf_filename}"
transformer = HunyuanVideoTransformer3DModel.from_single_file(
transformer_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
).to('cuda')
# Initialize pipeline
pipe = HunyuanVideoPipeline.from_pretrained(
ckp_path,
transformer=transformer,
torch_dtype=torch.float16
).to("cuda")
# Configure VAE
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.vae.eval()
# Available LoRAs in the TTV4ME repository
TTV4ME_Loras = {
"Top_Off.safetensors": "Top_Off.safetensors",
"huanyan_helper.safetensors": "huanyan_helper.safetensors",
"huanyan_helper_alpha.safetensors": "huanyan_helper_alpha.safetensors",
"hunyuan-t-solo-v1.0.safetensors": "hunyuan-t-solo-v1.0.safetensors",
"stripe_v2.safetensors": "stripe_v2.safetensors"
}
# Illustration Lora
ILLUSTRATION_LORA = "sergidev/IllustrationTTV"
ILLUSTRATION_LORA_NAME = "hunyuan_flat_color_v2.safetensors"
ILLUSTRATION_ADAPTER_NAME = "hyvid_lora_adapter"
# Load default LoRA adapters
pipe.load_lora_weights(
"Sergidev/TTV4ME", # Private repository
weight_name="stripe_v2.safetensors",
adapter_name="hunyuanvideo-lora",
token=os.environ.get("HF_TOKEN") # Access token from Space secrets
)
pipe.load_lora_weights(
"sergidev/IllustrationTTV",
weight_name="hunyuan_flat_color_v2.safetensors",
adapter_name="hyvid_lora_adapter"
)
# Set combined adapter weights
pipe.set_adapters(["hunyuanvideo-lora", "hyvid_lora_adapter"], [0.9, 0.8])
# Memory cleanup
gc.collect()
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=300)
def generate(
prompt,
uploaded_image,
height,
width,
num_frames,
num_inference_steps,
seed_value,
fps,
lora_names,
lora_weights,
progress=gr.Progress(track_tqdm=True)
):
with torch.cuda.device(0):
if seed_value == -1:
seed_value = torch.randint(0, MAX_SEED, (1,)).item()
generator = torch.Generator('cuda').manual_seed(seed_value)
# Handle image input
if uploaded_image:
init_image = Image.open(uploaded_image).convert("RGB").resize((width, height))
if init_image.size != (width, height):
raise gr.Error("Uploaded image resolution must match specified width and height.")
else:
init_image = None
# Configure LoRA adapters
adapter_names = ["hyvid_lora_adapter"] # Always include the illustration Lora
adapter_weights = [0.8] # Illustration Lora weight
for i, lora_name in enumerate(lora_names):
if lora_name != "None":
adapter_names.append("ttv4me_" + lora_name.split('.')[0]) # Create unique adapter name
adapter_weights.append(lora_weights[i])
# Check if the LoRA is already loaded, if not, load it
if not hasattr(pipe, "ttv4me_" + lora_name.split('.')[0]):
pipe.load_lora_weights(
"Sergidev/TTV4ME", # Private repository
weight_name=lora_name,
adapter_name="ttv4me_" + lora_name.split('.')[0],
token=os.environ.get("HF_TOKEN") # Access token from Space secrets
)
pipe.set_adapters(adapter_names, adapter_weights)
with torch.amp.autocast_mode.autocast('cuda', dtype=torch.bfloat16), torch.inference_mode(), torch.no_grad():
output = pipe(
prompt=prompt,
image=init_image,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
generator=generator,
).frames[0]
output_path = "output.mp4"
export_to_video(output, output_path, fps=fps)
torch.cuda.empty_cache()
gc.collect()
return output_path
def apply_preset(preset_name, *current_values):
if preset_name == "Higher Resolution":
return [608, 448, 24, 29, 12]
elif preset_name == "More Frames":
return [512, 320, 42, 27, 14]
return current_values
css = """
#col-container {
margin: 0 auto;
max-width: 850px;
}
.dark-theme {
background-color: #1f1f1f;
color: #ffffff;
}
.container {
margin: 0 auto;
padding: 20px;
border-radius: 10px;
background-color: #2d2d2d;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.title {
text-align: center;
margin-bottom: 1em;
color: #ffffff;
}
.description {
text-align: center;
margin-bottom: 2em;
color: #cccccc;
font-size: 0.95em;
line-height: 1.5;
}
.prompt-container {
background-color: #363636;
padding: 15px;
border-radius: 8px;
margin-bottom: 1em;
width: 100%;
}
.prompt-textbox {
min-height: 80px !important;
}
.preset-buttons {
display: flex;
gap: 10px;
justify-content: center;
margin-bottom: 1em;
}
.support-text {
text-align: center;
margin-top: 1em;
color: #cccccc;
font-size: 0.9em;
}
a {
color: #00a7e1;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
"""
with gr.Blocks(css=css, theme="dark") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🎬 Huanyan Studio", elem_classes=["title"])
gr.Markdown(
"""Image-to-video, text-to-video, with multiple LORAS to use.
This space uses the 'hunyuan flat color v2' LORA by Motimalu to generate better 2d animated sequences. Prompt only handles 77 tokens.
If you find this useful, please consider giving the space a ❤️ and supporting me on [Ko-Fi](https://ko-fi.com/sergidev)!""",
elem_classes=["description"]
)
with gr.Column(elem_classes=["prompt-container"]):
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here (Include the terms 'flat color, no lineart, blending' for 2d illustration)",
show_label=False,
elem_classes=["prompt-textbox"],
lines=3
)
with gr.Column(elem_classes=["prompt-container"]):
image_input = gr.Image(label="Upload Image (Optional)", image_types=["png", "jpg", "jpeg"])
with gr.Row():
run_button = gr.Button("🎨 Generate", variant="primary", size="lg")
with gr.Row(elem_classes=["preset-buttons"]):
preset_high_res = gr.Button("📺 Higher Resolution Preset")
preset_more_frames = gr.Button("🎞️ More Frames Preset")
with gr.Row():
result = gr.Video(label="Generated Video")
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(
label="Seed (-1 for random)",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=608,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=448,
)
with gr.Row():
num_frames = gr.Slider(
label="Number of frames to generate",
minimum=1.0,
maximum=257.0,
step=1,
value=24,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=29,
)
fps = gr.Slider(
label="Frames per second",
minimum=1,
maximum=60,
step=1,
value=12,
)
# LoRA Selection
lora_names = gr.CheckboxGroup(
choices=list(TTV4ME_Loras.keys()),
label="Select TTV4ME LoRAs"
)
lora_weights = []
for i in range(len(TTV4ME_Loras)):
lora_weights.append(gr.Slider(
label=f"Weight for LoRA {i + 1}",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
visible=False # Initially hidden
))
def update_lora_visibility(selected_loras):
visibility = [lora in selected_loras for lora in TTV4ME_Loras.keys()]
return visibility
lora_names.change(
update_lora_visibility,
inputs=[lora_names],
outputs=lora_weights
)
# Event handling
input_components = [prompt, image_input, height, width, num_frames, num_inference_steps, seed, fps, lora_names]
input_components.extend(lora_weights)
run_button.click(
fn=generate,
inputs=input_components,
outputs=[result],
)
# Preset button handlers
preset_high_res.click(
fn=lambda: apply_preset("Higher Resolution"),
outputs=[height, width, num_frames, num_inference_steps, fps]
)
preset_more_frames.click(
fn=lambda: apply_preset("More Frames"),
outputs=[height, width, num_frames, num_inference_steps, fps]