Spaces:
Build error
Build error
File size: 10,725 Bytes
2dd154f 0250a5e bd113ad 2dd154f 0250a5e 2dd154f 0250a5e eb9cf96 bd113ad 2dd154f 0250a5e bd113ad 0250a5e bd113ad 0250a5e 2dd154f 0250a5e 2dd154f 0250a5e 2dd154f 0250a5e bd113ad 0250a5e eb9cf96 0250a5e bd113ad 0250a5e eb9cf96 0250a5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import spaces
import gc
import gradio as gr
import numpy as np
import os
from pathlib import Path
from diffusers import GGUFQuantizationConfig, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
import torch
from PIL import Image
# Configuration
gc.collect()
torch.cuda.empty_cache()
torch.set_grad_enabled(False)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Load base model
model_id = "hunyuanvideo-community/HunyuanVideo"
base_path = f"/home/user/app/{model_id}"
os.makedirs(base_path, exist_ok=True)
snapshot_download(repo_id=model_id, local_dir=base_path)
# Load transformer
ckp_path = Path(base_path)
gguf_filename = "hunyuan-video-t2v-720p-Q4_0.gguf"
transformer_path = f"https://huggingface.co/city96/HunyuanVideo-gguf/blob/main/{gguf_filename}"
transformer = HunyuanVideoTransformer3DModel.from_single_file(
transformer_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
).to('cuda')
# Initialize pipeline
pipe = HunyuanVideoPipeline.from_pretrained(
ckp_path,
transformer=transformer,
torch_dtype=torch.float16
).to("cuda")
# Configure VAE
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.vae.eval()
# Available LoRAs in the TTV4ME repository
TTV4ME_Loras = {
"Top_Off.safetensors": "Top_Off.safetensors",
"huanyan_helper.safetensors": "huanyan_helper.safetensors",
"huanyan_helper_alpha.safetensors": "huanyan_helper_alpha.safetensors",
"hunyuan-t-solo-v1.0.safetensors": "hunyuan-t-solo-v1.0.safetensors",
"stripe_v2.safetensors": "stripe_v2.safetensors"
}
# Illustration Lora
ILLUSTRATION_LORA = "sergidev/IllustrationTTV"
ILLUSTRATION_LORA_NAME = "hunyuan_flat_color_v2.safetensors"
ILLUSTRATION_ADAPTER_NAME = "hyvid_lora_adapter"
# Load default LoRA adapters
pipe.load_lora_weights(
"Sergidev/TTV4ME", # Private repository
weight_name="stripe_v2.safetensors",
adapter_name="hunyuanvideo-lora",
token=os.environ.get("HF_TOKEN") # Access token from Space secrets
)
pipe.load_lora_weights(
"sergidev/IllustrationTTV",
weight_name="hunyuan_flat_color_v2.safetensors",
adapter_name="hyvid_lora_adapter"
)
# Set combined adapter weights
pipe.set_adapters(["hunyuanvideo-lora", "hyvid_lora_adapter"], [0.9, 0.8])
# Memory cleanup
gc.collect()
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=300)
def generate(
prompt,
uploaded_image,
height,
width,
num_frames,
num_inference_steps,
seed_value,
fps,
lora_names,
lora_weights,
progress=gr.Progress(track_tqdm=True)
):
with torch.cuda.device(0):
if seed_value == -1:
seed_value = torch.randint(0, MAX_SEED, (1,)).item()
generator = torch.Generator('cuda').manual_seed(seed_value)
# Handle image input
if uploaded_image:
init_image = Image.open(uploaded_image).convert("RGB").resize((width, height))
if init_image.size != (width, height):
raise gr.Error("Uploaded image resolution must match specified width and height.")
else:
init_image = None
# Configure LoRA adapters
adapter_names = ["hyvid_lora_adapter"] # Always include the illustration Lora
adapter_weights = [0.8] # Illustration Lora weight
for i, lora_name in enumerate(lora_names):
if lora_name != "None":
adapter_names.append("ttv4me_" + lora_name.split('.')[0]) # Create unique adapter name
adapter_weights.append(lora_weights[i])
# Check if the LoRA is already loaded, if not, load it
if not hasattr(pipe, "ttv4me_" + lora_name.split('.')[0]):
pipe.load_lora_weights(
"Sergidev/TTV4ME", # Private repository
weight_name=lora_name,
adapter_name="ttv4me_" + lora_name.split('.')[0],
token=os.environ.get("HF_TOKEN") # Access token from Space secrets
)
pipe.set_adapters(adapter_names, adapter_weights)
with torch.amp.autocast_mode.autocast('cuda', dtype=torch.bfloat16), torch.inference_mode(), torch.no_grad():
output = pipe(
prompt=prompt,
image=init_image,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
generator=generator,
).frames[0]
output_path = "output.mp4"
export_to_video(output, output_path, fps=fps)
torch.cuda.empty_cache()
gc.collect()
return output_path
def apply_preset(preset_name, *current_values):
if preset_name == "Higher Resolution":
return [608, 448, 24, 29, 12]
elif preset_name == "More Frames":
return [512, 320, 42, 27, 14]
return current_values
css = """
#col-container {
margin: 0 auto;
max-width: 850px;
}
.dark-theme {
background-color: #1f1f1f;
color: #ffffff;
}
.container {
margin: 0 auto;
padding: 20px;
border-radius: 10px;
background-color: #2d2d2d;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.title {
text-align: center;
margin-bottom: 1em;
color: #ffffff;
}
.description {
text-align: center;
margin-bottom: 2em;
color: #cccccc;
font-size: 0.95em;
line-height: 1.5;
}
.prompt-container {
background-color: #363636;
padding: 15px;
border-radius: 8px;
margin-bottom: 1em;
width: 100%;
}
.prompt-textbox {
min-height: 80px !important;
}
.preset-buttons {
display: flex;
gap: 10px;
justify-content: center;
margin-bottom: 1em;
}
.support-text {
text-align: center;
margin-top: 1em;
color: #cccccc;
font-size: 0.9em;
}
a {
color: #00a7e1;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
"""
with gr.Blocks(css=css, theme="dark") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🎬 Huanyan Studio", elem_classes=["title"])
gr.Markdown(
"""Image-to-video, text-to-video, with multiple LORAS to use.
This space uses the 'hunyuan flat color v2' LORA by Motimalu to generate better 2d animated sequences. Prompt only handles 77 tokens.
If you find this useful, please consider giving the space a ❤️ and supporting me on [Ko-Fi](https://ko-fi.com/sergidev)!""",
elem_classes=["description"]
)
with gr.Column(elem_classes=["prompt-container"]):
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here (Include the terms 'flat color, no lineart, blending' for 2d illustration)",
show_label=False,
elem_classes=["prompt-textbox"],
lines=3
)
with gr.Column(elem_classes=["prompt-container"]):
image_input = gr.Image(label="Upload Image (Optional)", image_types=["png", "jpg", "jpeg"])
with gr.Row():
run_button = gr.Button("🎨 Generate", variant="primary", size="lg")
with gr.Row(elem_classes=["preset-buttons"]):
preset_high_res = gr.Button("📺 Higher Resolution Preset")
preset_more_frames = gr.Button("🎞️ More Frames Preset")
with gr.Row():
result = gr.Video(label="Generated Video")
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(
label="Seed (-1 for random)",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=608,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=448,
)
with gr.Row():
num_frames = gr.Slider(
label="Number of frames to generate",
minimum=1.0,
maximum=257.0,
step=1,
value=24,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=29,
)
fps = gr.Slider(
label="Frames per second",
minimum=1,
maximum=60,
step=1,
value=12,
)
# LoRA Selection
lora_names = gr.CheckboxGroup(
choices=list(TTV4ME_Loras.keys()),
label="Select TTV4ME LoRAs"
)
lora_weights = []
for i in range(len(TTV4ME_Loras)):
lora_weights.append(gr.Slider(
label=f"Weight for LoRA {i + 1}",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
visible=False # Initially hidden
))
def update_lora_visibility(selected_loras):
visibility = [lora in selected_loras for lora in TTV4ME_Loras.keys()]
return visibility
lora_names.change(
update_lora_visibility,
inputs=[lora_names],
outputs=lora_weights
)
# Event handling
input_components = [prompt, image_input, height, width, num_frames, num_inference_steps, seed, fps, lora_names]
input_components.extend(lora_weights)
run_button.click(
fn=generate,
inputs=input_components,
outputs=[result],
)
# Preset button handlers
preset_high_res.click(
fn=lambda: apply_preset("Higher Resolution"),
outputs=[height, width, num_frames, num_inference_steps, fps]
)
preset_more_frames.click(
fn=lambda: apply_preset("More Frames"),
outputs=[height, width, num_frames, num_inference_steps, fps]
|