Spaces:
Build error
Build error
File size: 6,918 Bytes
2dd154f bd113ad 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f bd113ad 2dd154f 5dfd9f8 bd113ad 5dfd9f8 bd113ad 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f bd113ad 2dd154f 5dfd9f8 2dd154f 5dfd9f8 bd113ad 2dd154f 5dfd9f8 bd113ad 2dd154f 5dfd9f8 bd113ad 2dd154f bd113ad 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f 5dfd9f8 2dd154f bd113ad 2dd154f bd113ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import spaces
import gradio as gr
import numpy as np
import os
import torch
from PIL import Image
from pathlib import Path
from diffusers import HunyuanVideoPipeline
from huggingface_hub import snapshot_download
# Configuration
LORA_CHOICES = [
"Top_Off.safetensors",
"huanyan_helper.safetensors",
"huanyan_helper_alpha.safetensors",
"hunyuan-t-solo-v1.0.safetensors",
"stripe_v2.safetensors"
]
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Initialize pipeline with ZeroGPU optimizations
model_id = "Tencent-Hunyuan/Hunyuan-Video-Lite"
pipe = HunyuanVideoPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16
).to("cuda")
# Load all available LoRAs
for lora_file in LORA_CHOICES:
try:
pipe.load_lora_weights(
"Sergidev/TTV4ME",
weight_name=lora_file,
adapter_name=lora_file.split('.')[0],
token=os.environ.get("HF_TOKEN")
)
except Exception as e:
print(f"Error loading {lora_file}: {str(e)}")
@spaces.GPU(duration=300)
def generate(
prompt,
image_input,
height,
width,
num_frames,
num_inference_steps,
seed_value,
fps,
selected_loras,
lora_weights,
progress=gr.Progress(track_tqdm=True)
):
# Image validation
if image_input is not None:
img = Image.open(image_input)
if img.size != (width, height):
raise gr.Error(f"Image resolution {img.size} must match video resolution {width}x{height}")
prompt = f"Image prompt: {prompt}" if prompt else "Based on uploaded image"
# Set active LoRAs
active_adapters = []
adapter_weights = []
for idx, selected in enumerate(selected_loras):
if selected:
active_adapters.append(LORA_CHOICES[idx].split('.')[0])
adapter_weights.append(lora_weights[idx])
if active_adapters:
pipe.set_adapters(active_adapters, adapter_weights)
# Generation logic
torch.cuda.empty_cache()
if seed_value == -1:
seed_value = torch.randint(0, MAX_SEED, (1,)).item()
generator = torch.Generator('cuda').manual_seed(seed_value)
try:
if image_input:
output = pipe.image_to_video(
Image.open(image_input).convert("RGB"),
prompt=prompt,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
generator=generator,
)
else:
output = pipe.text_to_video(
prompt=prompt,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
generator=generator,
)
return output.video
finally:
torch.cuda.empty_cache()
def apply_preset(preset_name):
if preset_name == "Higher Resolution":
return [608, 448, 24, 29, 12]
elif preset_name == "More Frames":
return [512, 320, 42, 27, 14]
return [512, 512, 24, 25, 12]
css = """
/* Existing CSS remains unchanged */
"""
with gr.Blocks(css=css, theme="dark") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🎬 Hunyuan Studio", elem_classes=["title"])
gr.Markdown(
"""Text-to-Video & Image-to-Video generation with multiple LoRA adapters.<br>
Ensure image resolution matches selected video dimensions.""",
elem_classes=["description"]
)
with gr.Column(elem_classes=["prompt-container"]):
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter text prompt or describe the image...",
elem_classes=["prompt-textbox"],
lines=3
)
image_input = gr.Image(
label="Upload Reference Image (Optional)",
type="filepath",
visible=True
)
with gr.Row():
run_button = gr.Button("🎬 Generate Video", variant="primary", size="lg")
with gr.Row(elem_classes=["preset-buttons"]):
preset_high_res = gr.Button("📺 Resolution Preset")
preset_more_frames = gr.Button("🎞️ Frames Preset")
with gr.Row():
result = gr.Video(label="Generated Video")
with gr.Accordion("⚙️ Advanced Settings", open=False):
with gr.Row():
seed = gr.Slider(
label="Seed (-1 for random)",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=512,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=16,
value=512,
)
with gr.Row():
num_frames = gr.Slider(
label="Frame Count",
minimum=1,
maximum=257,
step=1,
value=24,
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
fps = gr.Slider(
label="FPS",
minimum=1,
maximum=60,
step=1,
value=12,
)
with gr.Accordion("🧩 LoRA Configuration", open=False):
lora_checkboxes = []
lora_sliders = []
for lora in LORA_CHOICES:
with gr.Row():
cb = gr.Checkbox(label=f"Enable {lora}", value=False)
sl = gr.Slider(0.0, 1.0, value=0.8, label=f"{lora} Weight")
lora_checkboxes.append(cb)
lora_sliders.append(sl)
# Event handling
run_button.click(
fn=generate,
inputs=[prompt, image_input, height, width, num_frames,
num_inference_steps, seed, fps, lora_checkboxes, lora_sliders],
outputs=result
)
preset_high_res.click(
fn=lambda: apply_preset("Higher Resolution"),
outputs=[height, width, num_frames, num_inference_steps, fps]
)
preset_more_frames.click(
fn=lambda: apply_preset("More Frames"),
outputs=[height, width, num_frames, num_inference_steps, fps]
)
|