File size: 15,883 Bytes
ca81ddd eb8efa1 743a94c 53691dd eb8efa1 53691dd 840ee09 ca81ddd 840ee09 ca81ddd 840ee09 e6644f0 53691dd eb8efa1 53691dd eb8efa1 53691dd a1c0e0a eb8efa1 a1c0e0a eb8efa1 a1c0e0a e6644f0 53691dd eb8efa1 e6644f0 eb8efa1 e6644f0 eb8efa1 53691dd eb8efa1 e6644f0 53691dd a1c0e0a e6644f0 ca81ddd eb8efa1 d50ead7 eb8efa1 128e9a1 eb8efa1 d50ead7 8bb2210 d50ead7 8bb2210 d50ead7 8bb2210 d50ead7 eb8efa1 d50ead7 8bb2210 d50ead7 eb8efa1 8bb2210 d50ead7 eb8efa1 e6644f0 eb8efa1 840ee09 e6644f0 128e9a1 e6644f0 840ee09 eb8efa1 e6644f0 840ee09 e6644f0 8bb2210 e6644f0 01414bf e6644f0 840ee09 e6644f0 840ee09 eb8efa1 53691dd 8bb2210 53691dd eb8efa1 53691dd eb8efa1 53691dd eb8efa1 128e9a1 eb8efa1 128e9a1 eb8efa1 53691dd eb8efa1 01414bf eb8efa1 128e9a1 eb8efa1 01414bf eb8efa1 e6644f0 d3ed68c eb8efa1 e6644f0 eb8efa1 d50ead7 eb8efa1 d50ead7 ca81ddd eb8efa1 ca81ddd 9be16b8 6b59ec0 eb8efa1 6b59ec0 ca81ddd 6b59ec0 ca81ddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import gradio as gr
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from prophet import Prophet
import io
from PIL import Image
# Первые наборы CSV-файлов
URL_DASHA = "https://raw.githubusercontent.com/fruitpicker01/Storage_Dasha_2025/main/messages.csv"
URL_LERA = "https://raw.githubusercontent.com/fruitpicker01/Storage_Lera_2025/main/messages.csv"
URL_SVETA = "https://raw.githubusercontent.com/fruitpicker01/Storage_Sveta_2025/main/messages.csv"
# Вторые наборы CSV-файлов
URL_DASHA_2 = "https://raw.githubusercontent.com/fruitpicker01/Storage_2_Dasha_2025/main/messages.csv"
URL_LERA_2 = "https://raw.githubusercontent.com/fruitpicker01/Storage_2_Lera_2025/main/messages.csv"
URL_SVETA_2 = "https://raw.githubusercontent.com/fruitpicker01/Storage_2_Sveta_2025/main/messages.csv"
def read_and_process_data(url, user_name):
"""
Считывает CSV, отбирает нужные столбцы,
удаляет дубликаты (gender, generation, industry, opf),
приводит timestamp -> date.
Возвращает:
- unique_count (кол-во уникальных записей)
- df_daily: [date, count, user]
"""
import requests, base64, io
print(f"\n=== [{user_name}] чтение CSV ===")
# 1) Предположим, что в url указано что-то вроде
# "https://github.com/username/repo/blob/main/messages.csv"
# или "https://raw.githubusercontent.com/..."
# Чтобы использовать API, нужно получить путь (owner, repo, path).
# Если у вас уже есть "https://raw.githubusercontent.com/<owner>/<repo>/main/messages.csv",
# то придётся вручную подставить значения owner/repo/file_path для Contents API.
# Пример разбора url (упрощённо):
# - Здесь у нас raw-ссылки, например:
# "https://raw.githubusercontent.com/fruitpicker01/Storage_Lera_2025/main/messages.csv"
# => owner = "fruitpicker01", repo = "Storage_Lera_2025", path = "messages.csv"
# В зависимости от структуры URL меняйте parse_* как нужно
# !!! ВАЖНО: Если у вас несколько веток/папок, подставьте их правильно ниже.
import re
pattern = re.compile(r"https://raw\.githubusercontent\.com/([^/]+)/([^/]+)/([^/]+)/(.+)")
m = pattern.match(url)
if not m:
# не узнали структуру: fallback - просто пробуем pd.read_csv напрямую
print(f"[{user_name}] URL не совпадает с raw.githubusercontent.com, читаем напрямую...")
df = pd.read_csv(url, na_values=["Не выбрано"])
else:
owner = m.group(1)
repo_name = m.group(2)
branch = m.group(3)
file_path = m.group(4) # например "messages.csv"
# 2) Обращаемся к GitHub Contents API
api_url = f"https://api.github.com/repos/{owner}/{repo_name}/contents/{file_path}?ref={branch}"
print(f"[{user_name}] Пытаемся Contents API: {api_url}")
resp = requests.get(api_url)
if resp.status_code != 200:
print(f"[{user_name}] Не удалось получить JSON (статус={resp.status_code}), читаем напрямую...")
df = pd.read_csv(url, na_values=["Не выбрано"])
else:
data_json = resp.json()
size = data_json.get("size", 0)
file_content_encoded = data_json.get("content")
download_url = data_json.get("download_url")
if not file_content_encoded or size > 1_000_000:
# Большой файл или отсутствует content => используем download_url
print(f"[{user_name}] Файл крупнее 1 МБ или content отсутствует, скачиваем по download_url={download_url}")
resp2 = requests.get(download_url)
resp2.raise_for_status()
csv_text = resp2.text
df = pd.read_csv(io.StringIO(csv_text), na_values=["Не выбрано"])
else:
# Получаем Base64 и декодируем
file_bytes = base64.b64decode(file_content_encoded)
df = pd.read_csv(io.StringIO(file_bytes.decode("utf-8")), na_values=["Не выбрано"])
print(f"[{user_name}] Исходное кол-во строк: {len(df)}")
# Дальше та же логика, что у вас была
cols = ["gender", "generation", "industry", "opf", "timestamp"]
df = df[[c for c in cols if c in df.columns]].copy()
print(f"[{user_name}] После отбора столбцов: {df.shape}")
df_unique = df.drop_duplicates(subset=["gender", "generation", "industry", "opf"]).copy()
print(f"[{user_name}] После drop_duplicates: {df_unique.shape}")
df_unique["timestamp"] = pd.to_numeric(df_unique["timestamp"], errors='coerce')
df_unique["date"] = pd.to_datetime(df_unique["timestamp"], unit="s", origin="unix", errors='coerce').dt.date
count_nat = df_unique["date"].isna().sum()
print(f"[{user_name}] Кол-во NaT дат: {count_nat}")
unique_count = len(df_unique)
# Группировка по датам
df_daily = df_unique.groupby("date").size().reset_index(name="count")
df_daily["user"] = user_name
return unique_count, df_daily
def make_average_forecast(total_by_date, end_date_str="2025-03-15"):
"""
Делает «прогноз по среднему» до указанной даты (end_date_str).
Берём средний дневной прирост count и
добавляем его день за днём (не учитывая выходные).
Возвращает DataFrame: [ds, yhat]
ds - дата (Timestamp)
yhat - прогноз накопленной суммы
"""
if total_by_date.empty:
return pd.DataFrame(columns=["ds", "yhat"])
df_tmp = total_by_date.copy()
df_tmp["date"] = pd.to_datetime(df_tmp["date"])
avg_inc = df_tmp["count"].mean() if len(df_tmp) else 0
last_date = df_tmp["date"].max()
last_cumulative = df_tmp["cumulative"].iloc[-1]
end_date = pd.to_datetime(end_date_str)
forecast_data = []
running_total = last_cumulative
current_date = last_date
while current_date < end_date:
current_date += pd.Timedelta(days=1)
if current_date > end_date:
break
running_total += avg_inc
forecast_data.append({"ds": current_date, "yhat": running_total})
return pd.DataFrame(forecast_data)
def process_data():
print("\n=== Начинаем process_data (Seaborn + Prophet + средний) ===")
# Чтение основного файла
dasha_count, dasha_daily = read_and_process_data(URL_DASHA, "Даша")
lera_count, lera_daily = read_and_process_data(URL_LERA, "Лера")
sveta_count, sveta_daily = read_and_process_data(URL_SVETA, "Света")
# Чтение второго набора данных (с обработкой ошибок)
try:
dasha_count2, dasha_daily2 = read_and_process_data(URL_DASHA_2, "Даша (2)")
except Exception as e:
print(f"[Даша (2)] Ошибка при чтении дополнительного CSV: {e}")
dasha_count2, dasha_daily2 = 0, pd.DataFrame(columns=["date", "count", "user"])
try:
lera_count2, lera_daily2 = read_and_process_data(URL_LERA_2, "Лера (2)")
except Exception as e:
print(f"[Лера (2)] Ошибка при чтении дополнительного CSV: {e}")
lera_count2, lera_daily2 = 0, pd.DataFrame(columns=["date", "count", "user"])
try:
sveta_count2, sveta_daily2 = read_and_process_data(URL_SVETA_2, "Света (2)")
except Exception as e:
print(f"[Света (2)] Ошибка при чтении дополнительного CSV: {e}")
sveta_count2, sveta_daily2 = 0, pd.DataFrame(columns=["date", "count", "user"])
# Объединяем основные и дополнительные данные по каждому пользователю
dasha_count_total = dasha_count + dasha_count2
lera_count_total = lera_count + lera_count2
sveta_count_total = sveta_count + sveta_count2
dasha_daily_total = pd.concat([dasha_daily, dasha_daily2], ignore_index=True)
lera_daily_total = pd.concat([lera_daily, lera_daily2], ignore_index=True)
sveta_daily_total = pd.concat([sveta_daily, sveta_daily2], ignore_index=True)
total_count = dasha_count_total + lera_count_total + sveta_count_total
print(f"Суммарное количество (Д+Л+С): {total_count}")
# Остальной код (прогресс-бары, объединение DataFrame, графики)
# замените исходные переменные на объединённые *_total
dasha_percent = round((dasha_count_total / 234) * 100) if 234 else 0
lera_percent = round((lera_count_total / 234) * 100) if 234 else 0
sveta_percent = round((sveta_count_total / 234) * 100) if 234 else 0
total_percent = round((total_count / 702) * 100) if 702 else 0
def get_progress_bar(label, abs_val, pct):
capacity = 234 if label in ["Даша", "Лера", "Света"] else 702
return f"""
<div style='margin-bottom: 1em;'>
<div><strong>{label}</strong></div>
<div style='width: 100%; background-color: #ddd; text-align: left;'>
<div style='width: {pct}%; background-color: #4CAF50; padding: 5px 0;'>
{abs_val} SMS ({pct}% из {capacity})
</div>
</div>
</div>
"""
bars_html = (
get_progress_bar("Даша", dasha_count_total, dasha_percent) +
get_progress_bar("Лера", lera_count_total, lera_percent) +
get_progress_bar("Света", sveta_count_total, sveta_percent) +
get_progress_bar("Всего", total_count, total_percent)
)
# Объединение ежедневных данных для построения графика
daily_all = pd.concat([dasha_daily_total, lera_daily_total, sveta_daily_total], ignore_index=True)
daily_all = daily_all.dropna(subset=["date"])
daily_all = daily_all.sort_values(["user", "date"])
daily_all["cumulative"] = daily_all.groupby("user")["count"].cumsum()
# «Всего»
total_by_date = daily_all.groupby("date")["count"].sum().reset_index(name="count")
total_by_date = total_by_date.sort_values("date")
total_by_date["cumulative"] = total_by_date["count"].cumsum()
total_by_date["user"] = "Всего"
# 4) Первый график: накопительное (все пользователи)
daily_all_final = pd.concat([daily_all, total_by_date], ignore_index=True)
daily_all_final["date_dt"] = pd.to_datetime(daily_all_final["date"])
# === ВАЖНО: сортируем легенду (user) по убыванию финального cumulative ===
last_values = daily_all_final.groupby("user")["cumulative"].last().sort_values(ascending=False)
sorted_users = last_values.index.tolist()
fig1, ax1 = plt.subplots(figsize=(8,5))
sns.lineplot(
data=daily_all_final,
x="date_dt", y="cumulative",
hue="user",
hue_order=sorted_users, # <-- передаём порядок
ax=ax1, marker="o"
)
ax1.set_title("Накопительное количество SMS")
ax1.set_xlabel("Дата")
ax1.set_ylabel("Накопленное число SMS")
fig1.autofmt_xdate(rotation=30)
buf1 = io.BytesIO()
plt.savefig(buf1, format="png")
buf1.seek(0)
image1_pil = Image.open(buf1)
# 5) Делаем «Всего» для Prophet + средний прогноз
df_prophet = total_by_date[["date", "cumulative"]].copy()
df_prophet.columns = ["ds", "y"]
df_prophet["ds"] = pd.to_datetime(df_prophet["ds"])
# Prophet-модель
model = Prophet()
model.fit(df_prophet)
# Прогноз до 15 марта 2025
end_date = pd.to_datetime("2025-03-15")
last_date = df_prophet["ds"].max()
additional_days = (end_date - last_date).days
future = model.make_future_dataframe(periods=additional_days if additional_days>0 else 0)
forecast = model.predict(future)
# Разделим историю и будущее
df_plot = pd.merge(
forecast[["ds", "yhat"]],
df_prophet[["ds", "y"]],
on="ds",
how="left"
)
df_history = df_plot.dropna(subset=["y"]).copy()
df_future = df_plot[df_plot["y"].isna()].copy()
# Прогноз по среднему
df_avg = make_average_forecast(total_by_date, "2025-03-15")
# Преобразуем для Seaborn
# История
df_history["type"] = "История"
df_history["value"] = df_history["y"]
# Prophet
df_future["type"] = "Прогноз (Prophet)"
df_future["value"] = df_future["yhat"]
# Средний
df_avg["type"] = "Прогноз (среднее)"
df_avg["value"] = df_avg["yhat"]
df_avg.rename(columns={"ds":"ds"}, inplace=True)
# Сшиваем все в один DataFrame
df_combined = pd.concat([df_history, df_future, df_avg], ignore_index=True)
# Для удобства
df_combined["ds"] = pd.to_datetime(df_combined["ds"])
# 6) Второй график: «История», «Прогноз (Prophet)», «Прогноз (среднее)» — пунктир
line_styles = {
"История": "",
"Прогноз (Prophet)": (2,2),
"Прогноз (среднее)": (2,2)
}
line_colors = {
"История": "blue",
"Прогноз (Prophet)": "red",
"Прогноз (среднее)": "green"
}
fig2, ax2 = plt.subplots(figsize=(8,5))
sns.lineplot(
data=df_combined,
x="ds", y="value",
hue="type",
style="type",
dashes=line_styles,
palette=line_colors,
markers=False,
ax=ax2
)
ax2.set_title("Прогноз до середины марта 2025 (Prophet & По среднему)")
ax2.set_xlabel("Дата")
ax2.set_ylabel("Накопленное число SMS (Всего)")
fig2.autofmt_xdate(rotation=30)
buf2 = io.BytesIO()
plt.savefig(buf2, format="png")
buf2.seek(0)
image2_pil = Image.open(buf2)
# 7) Возвращаем результат
return bars_html, image1_pil, image2_pil
# Gradio-интерфейс
with gr.Blocks() as demo:
gr.Markdown("<h2>Количество сохраненных SMS (Даша, Лера, Света, Всего) + Прогноз</h2>")
# gr.Markdown("<h2>Временно закрыто на ремонт")
btn = gr.Button("Обновить данные и показать результат")
html_output = gr.HTML(label="Прогресс-бары: количество SMS и %")
image_output1 = gr.Image(type="pil", label="Накопительный график")
image_output2 = gr.Image(type="pil", label="Прогноз: Prophet & По среднему")
btn.click(fn=process_data, outputs=[html_output, image_output1, image_output2])
if __name__ == "__main__":
demo.launch() |