Spaces:
Sleeping
Sleeping
# utils.py | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
import torch | |
class ImageCaptioningModel: | |
def __init__(self, model_name="Salesforce/blip-image-captioning-base"): | |
""" | |
Initialize BLIP Image Captioning model. | |
""" | |
self.processor = BlipProcessor.from_pretrained(model_name) | |
self.model = BlipForConditionalGeneration.from_pretrained(model_name) | |
self.model.eval() | |
def generate_caption(self, image_path): | |
""" | |
Generate a caption for the given image. | |
:param image_path: Path to the input image | |
:return: Generated caption (string) | |
""" | |
image = Image.open(image_path).convert("RGB") | |
inputs = self.processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
output = self.model.generate(**inputs) | |
caption = self.processor.tokenizer.decode(output[0], skip_special_tokens=True) | |
return caption | |