Spaces:
Sleeping
Sleeping
Image2caption simple
Browse files- __pycache__/utils.cpython-39.pyc +0 -0
- app.py +32 -0
- requirements.txt +4 -0
- utils.py +28 -0
__pycache__/utils.cpython-39.pyc
ADDED
Binary file (1.4 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
from utils import ImageCaptioningModel
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
# Initialize the BLIP Image Captioning model
|
7 |
+
captioning_model = ImageCaptioningModel()
|
8 |
+
|
9 |
+
# Streamlit UI
|
10 |
+
st.title("🖼️ Image Captioning with BLIP")
|
11 |
+
|
12 |
+
st.write("Upload an image and the model will generate a description.")
|
13 |
+
|
14 |
+
# Upload Image
|
15 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
16 |
+
|
17 |
+
if uploaded_file is not None:
|
18 |
+
# Display uploaded image
|
19 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
20 |
+
|
21 |
+
# Save file temporarily
|
22 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
23 |
+
temp_file.write(uploaded_file.getbuffer())
|
24 |
+
temp_file_path = temp_file.name
|
25 |
+
|
26 |
+
# Generate caption
|
27 |
+
with st.spinner("Generating caption..."):
|
28 |
+
caption = captioning_model.generate_caption(temp_file_path)
|
29 |
+
|
30 |
+
# Show caption result
|
31 |
+
st.success("Generated Caption:")
|
32 |
+
st.write(f"**{caption}**")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
Pillow
|
4 |
+
streamlit
|
utils.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils.py
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
class ImageCaptioningModel:
|
7 |
+
def __init__(self, model_name="Salesforce/blip-image-captioning-base"):
|
8 |
+
"""
|
9 |
+
Initialize BLIP Image Captioning model.
|
10 |
+
"""
|
11 |
+
self.processor = BlipProcessor.from_pretrained(model_name)
|
12 |
+
self.model = BlipForConditionalGeneration.from_pretrained(model_name)
|
13 |
+
self.model.eval()
|
14 |
+
|
15 |
+
def generate_caption(self, image_path):
|
16 |
+
"""
|
17 |
+
Generate a caption for the given image.
|
18 |
+
:param image_path: Path to the input image
|
19 |
+
:return: Generated caption (string)
|
20 |
+
"""
|
21 |
+
image = Image.open(image_path).convert("RGB")
|
22 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
23 |
+
|
24 |
+
with torch.no_grad():
|
25 |
+
output = self.model.generate(**inputs)
|
26 |
+
|
27 |
+
caption = self.processor.tokenizer.decode(output[0], skip_special_tokens=True)
|
28 |
+
return caption
|