Spaces:
Build error
Build error
File size: 5,743 Bytes
7823cea bf687e5 7823cea fff17ea b78ec6d 36f95d9 9bc27e3 ff6b580 a36d980 78e29c2 36f95d9 19d4ac3 bf687e5 fff17ea a36d980 d4c09d2 17df602 bf687e5 59cebaf ff6b580 59cebaf fff17ea 7823cea 78e29c2 36f95d9 7823cea 9bc27e3 36f95d9 9bc27e3 ff6b580 9bc27e3 ff6b580 9bc27e3 ff6b580 9bc27e3 36f95d9 7823cea fff17ea 7823cea 59cebaf fff17ea 59cebaf fff17ea 9bc27e3 ff6b580 7823cea bf687e5 7823cea fff17ea bf687e5 7823cea 36f95d9 7823cea bf687e5 7823cea 17df602 7823cea d771ba3 7823cea bf687e5 fff17ea 36f95d9 fff17ea 36f95d9 fff17ea bf687e5 7823cea bf687e5 f134081 7823cea bf687e5 7823cea 36f95d9 bf687e5 8fed1b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset, DownloadConfig
import os
import pickle
from pathlib import Path
import gc
import io
# 🔑 Configurar token de Hugging Face
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("⚠️ Por favor, configura la variable de entorno HF_TOKEN para acceder al dataset privado")
# 📁 Configurar directorio de embeddings
EMBEDDINGS_DIR = Path("embeddings")
EMBEDDINGS_DIR.mkdir(exist_ok=True)
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
os.system("rm -rf ~/.cache/huggingface/hub/datasets--Segizu--facial-recognition")
# ✅ Cargar el dataset de Hugging Face forzando la descarga limpia
download_config = DownloadConfig(
force_download=True,
token=HF_TOKEN
)
dataset = load_dataset("Segizu/facial-recognition", download_config=download_config)
if "train" in dataset:
dataset = dataset["train"]
# 🔄 Preprocesar imagen para Facenet
def preprocess_image(img):
if isinstance(img, str):
# Si es una ruta de archivo o bytes en string
img = Image.open(io.BytesIO(img.encode() if isinstance(img, str) else img))
elif isinstance(img, bytes):
# Si son bytes directos
img = Image.open(io.BytesIO(img))
img_rgb = img.convert("RGB")
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
return np.array(img_resized)
# 📦 Construir base de datos de embeddings
def build_database():
# Intentar cargar embeddings desde el archivo
if EMBEDDINGS_FILE.exists():
print("📂 Cargando embeddings desde el archivo...")
with open(EMBEDDINGS_FILE, 'rb') as f:
return pickle.load(f)
print("🔄 Calculando embeddings (esto puede tomar unos minutos)...")
database = []
batch_size = 10 # Procesar 10 imágenes a la vez
for i in range(0, len(dataset), batch_size):
batch = dataset[i:i + batch_size]
print(f"📦 Procesando lote {i//batch_size + 1}/{(len(dataset) + batch_size - 1)//batch_size}")
for j, item in enumerate(batch):
try:
# Debug: Imprimir la estructura del item
print(f"Estructura del item {i+j}:", type(item), item.keys() if hasattr(item, 'keys') else "No tiene keys")
# Intentar diferentes formas de acceder a la imagen
if isinstance(item, dict):
if 'image' in item:
img = item['image']
elif 'bytes' in item:
img = item['bytes']
else:
print(f"❌ No se encontró la imagen en el item {i+j}")
continue
else:
print(f"❌ Formato de item no reconocido: {type(item)}")
continue
img_processed = preprocess_image(img)
embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
database.append((f"image_{i+j}", img, embedding))
print(f"✅ Procesada imagen {i+j+1}/{len(dataset)}")
# Liberar memoria
del img_processed
gc.collect()
except Exception as e:
print(f"❌ No se pudo procesar imagen {i+j}: {str(e)}")
print(f"Tipo de error: {type(e)}")
continue
# Guardar progreso después de cada lote
if database: # Solo guardar si hay datos
print("💾 Guardando progreso...")
with open(EMBEDDINGS_FILE, 'wb') as f:
pickle.dump(database, f)
# Liberar memoria después de cada lote
gc.collect()
return database
# 🔍 Buscar rostros similares
def find_similar_faces(uploaded_image):
try:
img_processed = preprocess_image(uploaded_image)
query_embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
# Liberar memoria
del img_processed
gc.collect()
except Exception as e:
print(f"Error al procesar imagen de consulta: {str(e)}")
return [], "⚠ No se detectó un rostro válido en la imagen."
similarities = []
for name, db_img, embedding in database:
dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
sim_score = 1 / (1 + dist)
similarities.append((sim_score, name, db_img))
similarities.sort(reverse=True)
top_matches = similarities[:5]
gallery_items = []
text_summary = ""
for sim, name, img in top_matches:
caption = f"{name} - Similitud: {sim:.2f}"
gallery_items.append((img, caption))
text_summary += caption + "\n"
return gallery_items, text_summary
# ⚙️ Inicializar base
print("🚀 Iniciando aplicación...")
database = build_database()
print(f"✅ Base de datos cargada con {len(database)} imágenes")
# 🎛️ Interfaz Gradio
demo = gr.Interface(
fn=find_similar_faces,
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
outputs=[
gr.Gallery(label="📸 Rostros más similares"),
gr.Textbox(label="🧠 Similitud", lines=6)
],
title="🔍 Buscador de Rostros con DeepFace",
description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/facial-recognition`)."
)
demo.launch()
|