Spaces:
Build error
Build error
File size: 3,873 Bytes
7823cea bf687e5 7823cea fff17ea b78ec6d 36f95d9 a36d980 78e29c2 36f95d9 b78ec6d bf687e5 fff17ea a36d980 d4c09d2 17df602 bf687e5 59cebaf fff17ea 7823cea 78e29c2 36f95d9 7823cea 17df602 59cebaf fff17ea 59cebaf fff17ea 59cebaf 36f95d9 17df602 36f95d9 78e29c2 36f95d9 7823cea fff17ea 7823cea 59cebaf fff17ea 59cebaf fff17ea 7823cea bf687e5 7823cea fff17ea bf687e5 7823cea 36f95d9 7823cea bf687e5 7823cea 17df602 7823cea d771ba3 7823cea bf687e5 fff17ea 36f95d9 fff17ea 36f95d9 fff17ea bf687e5 7823cea bf687e5 f134081 7823cea bf687e5 7823cea 36f95d9 bf687e5 8fed1b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset, DownloadConfig
import os
import pickle
from pathlib import Path
# 🔑 Configurar token de Hugging Face
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("⚠️ Por favor, configura la variable de entorno HF_TOKEN para acceder al dataset privado")
# 📁 Configurar directorio de embeddings
EMBEDDINGS_DIR = Path("embeddings")
EMBEDDINGS_DIR.mkdir(exist_ok=True)
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
os.system("rm -rf ~/.cache/huggingface/hub/datasets--Segizu--dataset_faces")
# ✅ Cargar el dataset de Hugging Face forzando la descarga limpia
download_config = DownloadConfig(
force_download=True,
token=HF_TOKEN
)
dataset = load_dataset("Segizu/facial-recognition", download_config=download_config)
if "train" in dataset:
dataset = dataset["train"]
# 🔄 Preprocesar imagen para Facenet
def preprocess_image(img):
img_rgb = img.convert("RGB")
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
return np.array(img_resized)
# 📦 Construir base de datos de embeddings
def build_database():
# Intentar cargar embeddings desde el archivo
if EMBEDDINGS_FILE.exists():
print("📂 Cargando embeddings desde el archivo...")
with open(EMBEDDINGS_FILE, 'rb') as f:
return pickle.load(f)
print("🔄 Calculando embeddings (esto puede tomar unos minutos)...")
database = []
for i, item in enumerate(dataset):
try:
img = item["image"]
img_processed = preprocess_image(img)
embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
database.append((f"image_{i}", img, embedding))
print(f"✅ Procesada imagen {i+1}/{len(dataset)}")
except Exception as e:
print(f"❌ No se pudo procesar imagen {i}: {e}")
# Guardar embeddings en el archivo
print("💾 Guardando embeddings en el archivo...")
with open(EMBEDDINGS_FILE, 'wb') as f:
pickle.dump(database, f)
return database
# 🔍 Buscar rostros similares
def find_similar_faces(uploaded_image):
try:
img_processed = preprocess_image(uploaded_image)
query_embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
except:
return [], "⚠ No se detectó un rostro válido en la imagen."
similarities = []
for name, db_img, embedding in database:
dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
sim_score = 1 / (1 + dist)
similarities.append((sim_score, name, db_img))
similarities.sort(reverse=True)
top_matches = similarities[:5]
gallery_items = []
text_summary = ""
for sim, name, img in top_matches:
caption = f"{name} - Similitud: {sim:.2f}"
gallery_items.append((img, caption))
text_summary += caption + "\n"
return gallery_items, text_summary
# ⚙️ Inicializar base
print("🚀 Iniciando aplicación...")
database = build_database()
print(f"✅ Base de datos cargada con {len(database)} imágenes")
# 🎛️ Interfaz Gradio
demo = gr.Interface(
fn=find_similar_faces,
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
outputs=[
gr.Gallery(label="📸 Rostros más similares"),
gr.Textbox(label="🧠 Similitud", lines=6)
],
title="🔍 Buscador de Rostros con DeepFace",
description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/facial-recognition`)."
)
demo.launch()
|