Spaces:
Sleeping
Sleeping
import os | |
import re | |
from datetime import datetime, timedelta | |
from typing import TypedDict, Annotated | |
import sympy as sp | |
import math | |
from langchain_openai import ChatOpenAI | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_core.messages import HumanMessage, SystemMessage | |
# Load environment variables | |
from dotenv import load_dotenv | |
load_dotenv() | |
def read_system_prompt(): | |
"""Read the system prompt from file""" | |
try: | |
with open('system_prompt.txt', 'r') as f: | |
return f.read().strip() | |
except FileNotFoundError: | |
return """You are a helpful assistant tasked with answering questions using a set of tools. | |
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: | |
FINAL ANSWER: [YOUR FINAL ANSWER]. | |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. | |
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.""" | |
def math_calculator(expression: str) -> str: | |
""" | |
Advanced mathematical calculator that can handle complex expressions, | |
equations, symbolic math, calculus, and more using SymPy. | |
""" | |
try: | |
# Clean the expression | |
expression = expression.strip() | |
# Handle common mathematical operations and functions | |
expression = expression.replace('^', '**') # Convert ^ to ** | |
expression = expression.replace('ln', 'log') # Natural log | |
# Try to evaluate as a symbolic expression first | |
try: | |
result = sp.sympify(expression) | |
# If it's a symbolic expression that can be simplified | |
simplified = sp.simplify(result) | |
# Try to get numerical value | |
try: | |
numerical = float(simplified.evalf()) | |
return str(numerical) | |
except: | |
return str(simplified) | |
except: | |
# Fall back to basic evaluation | |
# Replace common math functions | |
safe_expression = expression | |
for func in ['sin', 'cos', 'tan', 'sqrt', 'log', 'exp', 'abs']: | |
safe_expression = safe_expression.replace(func, f'math.{func}') | |
# Evaluate safely | |
result = eval(safe_expression, {"__builtins__": {}}, { | |
"math": math, | |
"pi": math.pi, | |
"e": math.e | |
}) | |
return str(result) | |
except Exception as e: | |
return f"Error calculating '{expression}': {str(e)}" | |
def date_time_processor(query: str) -> str: | |
""" | |
Process date and time related queries, calculations, and conversions. | |
""" | |
try: | |
current_time = datetime.now() | |
query_lower = query.lower() | |
# Current date/time queries | |
if 'current' in query_lower or 'today' in query_lower or 'now' in query_lower: | |
if 'date' in query_lower: | |
return current_time.strftime('%Y-%m-%d') | |
elif 'time' in query_lower: | |
return current_time.strftime('%H:%M:%S') | |
else: | |
return current_time.strftime('%Y-%m-%d %H:%M:%S') | |
# Day of week queries | |
if 'day of week' in query_lower or 'what day' in query_lower: | |
return current_time.strftime('%A') | |
# Year queries | |
if 'year' in query_lower and 'current' in query_lower: | |
return str(current_time.year) | |
# Month queries | |
if 'month' in query_lower and 'current' in query_lower: | |
return current_time.strftime('%B') | |
# Date arithmetic (simple cases) | |
if 'days ago' in query_lower: | |
days_match = re.search(r'(\d+)\s+days?\s+ago', query_lower) | |
if days_match: | |
days = int(days_match.group(1)) | |
past_date = current_time - timedelta(days=days) | |
return past_date.strftime('%Y-%m-%d') | |
if 'days from now' in query_lower or 'days later' in query_lower: | |
days_match = re.search(r'(\d+)\s+days?\s+(?:from now|later)', query_lower) | |
if days_match: | |
days = int(days_match.group(1)) | |
future_date = current_time + timedelta(days=days) | |
return future_date.strftime('%Y-%m-%d') | |
# If no specific pattern matched, return current datetime | |
return f"Current date and time: {current_time.strftime('%Y-%m-%d %H:%M:%S')}" | |
except Exception as e: | |
return f"Error processing date/time query: {str(e)}" | |
# Removed LangGraph dependencies - using simpler approach | |
class GAIAAgent: | |
def __init__(self): | |
# Check for required API keys | |
openai_key = os.getenv("OPENAI_API_KEY") | |
tavily_key = os.getenv("TAVILY_API_KEY") | |
if not openai_key: | |
raise ValueError("OPENAI_API_KEY environment variable is required") | |
if not tavily_key: | |
print("⚠️ TAVILY_API_KEY not found - web search will be disabled") | |
self.has_search = False | |
else: | |
self.has_search = True | |
print("✅ Initializing GAIA agent...") | |
# Initialize LLM (using OpenAI GPT-4) | |
self.llm = ChatOpenAI( | |
model="gpt-4o-mini", | |
temperature=0, | |
openai_api_key=openai_key | |
) | |
# Initialize search tool if available | |
if self.has_search: | |
self.search_tool = TavilySearchResults( | |
max_results=5, | |
tavily_api_key=tavily_key | |
) | |
else: | |
self.search_tool = None | |
self.system_prompt = read_system_prompt() | |
def _search_web(self, query: str) -> str: | |
"""Perform web search if available""" | |
if not self.search_tool: | |
return "Web search not available (no Tavily API key)" | |
try: | |
results = self.search_tool.invoke({"query": query}) | |
if results and len(results) > 0: | |
# Format the results nicely | |
formatted_results = [] | |
for i, result in enumerate(results[:3], 1): # Top 3 results | |
if isinstance(result, dict): | |
title = result.get('title', 'No title') | |
content = result.get('content', 'No content') | |
url = result.get('url', 'No URL') | |
formatted_results.append(f"{i}. {title}\n {content}\n Source: {url}") | |
else: | |
formatted_results.append(f"{i}. {str(result)}") | |
return "\n\n".join(formatted_results) | |
else: | |
return "No search results found" | |
except Exception as e: | |
return f"Search error: {str(e)}" | |
def _is_math_problem(self, text: str) -> bool: | |
"""Check if the text contains mathematical expressions""" | |
math_indicators = [ | |
'+', '-', '*', '/', '^', '=', 'calculate', 'compute', | |
'solve', 'equation', 'integral', 'derivative', 'sum', | |
'sqrt', 'log', 'sin', 'cos', 'tan', 'exp' | |
] | |
text_lower = text.lower() | |
return any(indicator in text_lower for indicator in math_indicators) or \ | |
re.search(r'\d+[\+\-\*/\^]\d+', text) is not None | |
def _is_datetime_problem(self, text: str) -> bool: | |
"""Check if the text contains date/time related queries""" | |
datetime_indicators = [ | |
'date', 'time', 'day', 'month', 'year', 'today', 'yesterday', | |
'tomorrow', 'current', 'now', 'ago', 'later', 'when' | |
] | |
text_lower = text.lower() | |
return any(indicator in text_lower for indicator in datetime_indicators) | |
def __call__(self, question: str) -> str: | |
"""Process a question and return the answer""" | |
try: | |
print(f"Processing question: {question[:100]}...") | |
# Check for file/media requirements that we can't handle | |
if any(indicator in question.lower() for indicator in [ | |
'attached', 'audio', 'video', 'image', 'file', 'mp3', 'pdf', | |
'excel', 'spreadsheet', 'listen to', 'watch', 'download' | |
]): | |
return "Unable to process files or media attachments" | |
# Build the prompt based on question type | |
enhanced_question = self._enhance_question(question) | |
# Create messages | |
messages = [ | |
SystemMessage(content=self.system_prompt), | |
HumanMessage(content=enhanced_question) | |
] | |
# Get response from LLM | |
response = self.llm.invoke(messages) | |
response_content = response.content if hasattr(response, 'content') else str(response) | |
# Extract the final answer | |
final_answer = self._extract_final_answer(response_content) | |
print(f"Final answer: {final_answer}") | |
return final_answer | |
except Exception as e: | |
print(f"Error processing question: {e}") | |
# Try to provide a meaningful fallback | |
if "api" in str(e).lower() or "key" in str(e).lower(): | |
return "Error: API key configuration issue" | |
elif "tool" in str(e).lower(): | |
return "Error: Tool execution issue" | |
else: | |
return f"Unable to process question due to technical error" | |
def _enhance_question(self, question: str) -> str: | |
"""Enhance the question with relevant context and tools""" | |
try: | |
# Check if this is a math problem | |
if self._is_math_problem(question): | |
try: | |
math_result = math_calculator(question) | |
return f"Question: {question}\n\nMath calculation result: {math_result}\n\nBased on this calculation, provide your final answer using the format: FINAL ANSWER: [your answer]" | |
except Exception as e: | |
print(f"Math calculation error: {e}") | |
# Check if this is a date/time problem | |
elif self._is_datetime_problem(question): | |
try: | |
datetime_result = date_time_processor(question) | |
return f"Question: {question}\n\nDate/time processing result: {datetime_result}\n\nBased on this information, provide your final answer using the format: FINAL ANSWER: [your answer]" | |
except Exception as e: | |
print(f"DateTime processing error: {e}") | |
# Check if this needs web search | |
elif self._needs_web_search(question): | |
try: | |
search_result = self._search_web(question) | |
return f"Question: {question}\n\nWeb search results:\n{search_result}\n\nBased on this information, provide your final answer using the format: FINAL ANSWER: [your answer]" | |
except Exception as e: | |
print(f"Web search error: {e}") | |
# For other questions, just add the format instruction | |
return f"Question: {question}\n\nProvide your final answer using the format: FINAL ANSWER: [your answer]" | |
except Exception as e: | |
print(f"Question enhancement error: {e}") | |
return f"Question: {question}\n\nProvide your final answer using the format: FINAL ANSWER: [your answer]" | |
def _needs_web_search(self, text: str) -> bool: | |
"""Check if the question likely needs web search""" | |
search_indicators = [ | |
'who', 'what', 'when', 'where', 'which', 'published', 'article', | |
'wikipedia', 'latest', 'recent', 'current', 'news', 'website', | |
'url', 'http', 'www', 'competition', 'olympics', 'award', | |
'winner', 'recipient', 'author', 'published in', 'paper', | |
'study', 'research', 'species', 'city', 'country' | |
] | |
text_lower = text.lower() | |
return any(indicator in text_lower for indicator in search_indicators) | |
def _extract_final_answer(self, response: str) -> str: | |
"""Extract the final answer from the response""" | |
if "FINAL ANSWER:" in response: | |
# Find the final answer part | |
parts = response.split("FINAL ANSWER:") | |
if len(parts) > 1: | |
answer = parts[-1].strip() | |
# Remove any trailing punctuation or explanations | |
answer = answer.split('\n')[0].strip() | |
return answer | |
# If no FINAL ANSWER format found, return the whole response | |
return response.strip() | |
# Create a function to get the agent (for use in app.py) | |
def create_agent(): | |
"""Factory function to create the GAIA agent""" | |
return GAIAAgent() |