Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -7,10 +7,6 @@ import math
|
|
7 |
from langchain_openai import ChatOpenAI
|
8 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
9 |
from langchain_core.messages import HumanMessage, SystemMessage
|
10 |
-
from langgraph.graph import StateGraph, MessagesState, START, END
|
11 |
-
from langgraph.prebuilt import ToolNode
|
12 |
-
from langgraph.checkpoint.memory import MemorySaver
|
13 |
-
import json
|
14 |
|
15 |
# Load environment variables
|
16 |
from dotenv import load_dotenv
|
@@ -123,9 +119,7 @@ def date_time_processor(query: str) -> str:
|
|
123 |
except Exception as e:
|
124 |
return f"Error processing date/time query: {str(e)}"
|
125 |
|
126 |
-
#
|
127 |
-
class AgentState(TypedDict):
|
128 |
-
messages: Annotated[list, "The messages in the conversation"]
|
129 |
|
130 |
class GAIAAgent:
|
131 |
def __init__(self):
|
@@ -150,138 +144,41 @@ class GAIAAgent:
|
|
150 |
openai_api_key=openai_key
|
151 |
)
|
152 |
|
153 |
-
# Initialize
|
154 |
-
self.tools = []
|
155 |
if self.has_search:
|
156 |
self.search_tool = TavilySearchResults(
|
157 |
max_results=5,
|
158 |
tavily_api_key=tavily_key
|
159 |
)
|
160 |
-
self.tools = [self.search_tool]
|
161 |
-
|
162 |
-
# Create LLM with tools (only if we have tools)
|
163 |
-
if self.tools:
|
164 |
-
self.llm_with_tools = self.llm.bind_tools(self.tools)
|
165 |
else:
|
166 |
-
self.
|
167 |
-
|
168 |
-
# Build the graph
|
169 |
-
self.graph = self._build_graph()
|
170 |
|
171 |
self.system_prompt = read_system_prompt()
|
172 |
|
173 |
-
def
|
174 |
-
"""
|
175 |
-
|
176 |
-
|
177 |
-
"""Main agent reasoning node"""
|
178 |
-
messages = state["messages"]
|
179 |
-
|
180 |
-
# Add system message if not present at the beginning
|
181 |
-
if not any(isinstance(msg, SystemMessage) for msg in messages):
|
182 |
-
system_msg = SystemMessage(content=self.system_prompt)
|
183 |
-
messages = [system_msg] + messages
|
184 |
-
|
185 |
-
# Get the original question (the first HumanMessage)
|
186 |
-
original_question = None
|
187 |
-
for msg in messages:
|
188 |
-
if isinstance(msg, HumanMessage):
|
189 |
-
original_question = msg.content
|
190 |
-
break
|
191 |
-
|
192 |
-
# Check if this is a fresh question (not after tool calls)
|
193 |
-
last_msg = messages[-1]
|
194 |
-
is_fresh_question = isinstance(last_msg, HumanMessage)
|
195 |
-
|
196 |
-
# Only do special processing for fresh questions
|
197 |
-
if is_fresh_question and original_question:
|
198 |
-
# Check if this is a math problem
|
199 |
-
if self._is_math_problem(original_question):
|
200 |
-
try:
|
201 |
-
math_result = math_calculator(original_question)
|
202 |
-
enhanced_msg = f"Question: {original_question}\n\nMath calculation result: {math_result}\n\nBased on this calculation, provide your final answer using the format: FINAL ANSWER: [your answer]"
|
203 |
-
messages[-1] = HumanMessage(content=enhanced_msg)
|
204 |
-
except Exception as e:
|
205 |
-
print(f"Math calculation error: {e}")
|
206 |
-
|
207 |
-
# Check if this is a date/time problem
|
208 |
-
elif self._is_datetime_problem(original_question):
|
209 |
-
try:
|
210 |
-
datetime_result = date_time_processor(original_question)
|
211 |
-
enhanced_msg = f"Question: {original_question}\n\nDate/time processing result: {datetime_result}\n\nBased on this information, provide your final answer using the format: FINAL ANSWER: [your answer]"
|
212 |
-
messages[-1] = HumanMessage(content=enhanced_msg)
|
213 |
-
except Exception as e:
|
214 |
-
print(f"DateTime processing error: {e}")
|
215 |
-
|
216 |
-
try:
|
217 |
-
response = self.llm_with_tools.invoke(messages)
|
218 |
-
return {"messages": messages + [response]}
|
219 |
-
except Exception as e:
|
220 |
-
print(f"LLM invocation error: {e}")
|
221 |
-
# Return a simple response on error
|
222 |
-
error_response = HumanMessage(content=f"FINAL ANSWER: Error processing question: {str(e)}")
|
223 |
-
return {"messages": messages + [error_response]}
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
def should_continue(state: AgentState):
|
239 |
-
"""Decide whether to continue or end"""
|
240 |
-
try:
|
241 |
-
last_message = state["messages"][-1]
|
242 |
-
|
243 |
-
# If we don't have tools, just end
|
244 |
-
if not self.tools:
|
245 |
-
return "end"
|
246 |
-
|
247 |
-
# If the last message has tool calls, continue to tools
|
248 |
-
if hasattr(last_message, 'tool_calls') and last_message.tool_calls:
|
249 |
-
return "tools"
|
250 |
-
|
251 |
-
# If we have a final answer, end
|
252 |
-
if (hasattr(last_message, 'content') and
|
253 |
-
last_message.content and
|
254 |
-
"FINAL ANSWER:" in str(last_message.content)):
|
255 |
-
return "end"
|
256 |
-
|
257 |
-
# Check if we've had too many iterations (prevent infinite loops)
|
258 |
-
if len(state["messages"]) > 10:
|
259 |
-
return "end"
|
260 |
-
|
261 |
-
# Otherwise end (be conservative)
|
262 |
-
return "end"
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
return "
|
267 |
-
|
268 |
-
|
269 |
-
workflow = StateGraph(AgentState)
|
270 |
-
|
271 |
-
# Add nodes
|
272 |
-
workflow.add_node("agent", agent_node)
|
273 |
-
workflow.add_node("tools", tool_node)
|
274 |
-
|
275 |
-
# Add edges
|
276 |
-
workflow.add_edge(START, "agent")
|
277 |
-
workflow.add_conditional_edges("agent", should_continue, {
|
278 |
-
"tools": "tools",
|
279 |
-
"end": END
|
280 |
-
})
|
281 |
-
workflow.add_edge("tools", "agent")
|
282 |
-
|
283 |
-
# Compile without checkpointer to avoid state issues
|
284 |
-
return workflow.compile()
|
285 |
|
286 |
def _is_math_problem(self, text: str) -> bool:
|
287 |
"""Check if the text contains mathematical expressions"""
|
@@ -315,19 +212,20 @@ class GAIAAgent:
|
|
315 |
]):
|
316 |
return "Unable to process files or media attachments"
|
317 |
|
318 |
-
#
|
319 |
-
|
320 |
-
"messages": [HumanMessage(content=question)]
|
321 |
-
}
|
322 |
|
323 |
-
#
|
324 |
-
|
|
|
|
|
|
|
325 |
|
326 |
-
#
|
327 |
-
|
328 |
-
response_content =
|
329 |
|
330 |
-
# Extract
|
331 |
final_answer = self._extract_final_answer(response_content)
|
332 |
|
333 |
print(f"Final answer: {final_answer}")
|
@@ -343,6 +241,52 @@ class GAIAAgent:
|
|
343 |
else:
|
344 |
return f"Unable to process question due to technical error"
|
345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
def _extract_final_answer(self, response: str) -> str:
|
347 |
"""Extract the final answer from the response"""
|
348 |
if "FINAL ANSWER:" in response:
|
|
|
7 |
from langchain_openai import ChatOpenAI
|
8 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
9 |
from langchain_core.messages import HumanMessage, SystemMessage
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Load environment variables
|
12 |
from dotenv import load_dotenv
|
|
|
119 |
except Exception as e:
|
120 |
return f"Error processing date/time query: {str(e)}"
|
121 |
|
122 |
+
# Removed LangGraph dependencies - using simpler approach
|
|
|
|
|
123 |
|
124 |
class GAIAAgent:
|
125 |
def __init__(self):
|
|
|
144 |
openai_api_key=openai_key
|
145 |
)
|
146 |
|
147 |
+
# Initialize search tool if available
|
|
|
148 |
if self.has_search:
|
149 |
self.search_tool = TavilySearchResults(
|
150 |
max_results=5,
|
151 |
tavily_api_key=tavily_key
|
152 |
)
|
|
|
|
|
|
|
|
|
|
|
153 |
else:
|
154 |
+
self.search_tool = None
|
|
|
|
|
|
|
155 |
|
156 |
self.system_prompt = read_system_prompt()
|
157 |
|
158 |
+
def _search_web(self, query: str) -> str:
|
159 |
+
"""Perform web search if available"""
|
160 |
+
if not self.search_tool:
|
161 |
+
return "Web search not available (no Tavily API key)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
try:
|
164 |
+
results = self.search_tool.invoke({"query": query})
|
165 |
+
if results and len(results) > 0:
|
166 |
+
# Format the results nicely
|
167 |
+
formatted_results = []
|
168 |
+
for i, result in enumerate(results[:3], 1): # Top 3 results
|
169 |
+
if isinstance(result, dict):
|
170 |
+
title = result.get('title', 'No title')
|
171 |
+
content = result.get('content', 'No content')
|
172 |
+
url = result.get('url', 'No URL')
|
173 |
+
formatted_results.append(f"{i}. {title}\n {content}\n Source: {url}")
|
174 |
+
else:
|
175 |
+
formatted_results.append(f"{i}. {str(result)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
return "\n\n".join(formatted_results)
|
178 |
+
else:
|
179 |
+
return "No search results found"
|
180 |
+
except Exception as e:
|
181 |
+
return f"Search error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
def _is_math_problem(self, text: str) -> bool:
|
184 |
"""Check if the text contains mathematical expressions"""
|
|
|
212 |
]):
|
213 |
return "Unable to process files or media attachments"
|
214 |
|
215 |
+
# Build the prompt based on question type
|
216 |
+
enhanced_question = self._enhance_question(question)
|
|
|
|
|
217 |
|
218 |
+
# Create messages
|
219 |
+
messages = [
|
220 |
+
SystemMessage(content=self.system_prompt),
|
221 |
+
HumanMessage(content=enhanced_question)
|
222 |
+
]
|
223 |
|
224 |
+
# Get response from LLM
|
225 |
+
response = self.llm.invoke(messages)
|
226 |
+
response_content = response.content if hasattr(response, 'content') else str(response)
|
227 |
|
228 |
+
# Extract the final answer
|
229 |
final_answer = self._extract_final_answer(response_content)
|
230 |
|
231 |
print(f"Final answer: {final_answer}")
|
|
|
241 |
else:
|
242 |
return f"Unable to process question due to technical error"
|
243 |
|
244 |
+
def _enhance_question(self, question: str) -> str:
|
245 |
+
"""Enhance the question with relevant context and tools"""
|
246 |
+
try:
|
247 |
+
# Check if this is a math problem
|
248 |
+
if self._is_math_problem(question):
|
249 |
+
try:
|
250 |
+
math_result = math_calculator(question)
|
251 |
+
return f"Question: {question}\n\nMath calculation result: {math_result}\n\nBased on this calculation, provide your final answer using the format: FINAL ANSWER: [your answer]"
|
252 |
+
except Exception as e:
|
253 |
+
print(f"Math calculation error: {e}")
|
254 |
+
|
255 |
+
# Check if this is a date/time problem
|
256 |
+
elif self._is_datetime_problem(question):
|
257 |
+
try:
|
258 |
+
datetime_result = date_time_processor(question)
|
259 |
+
return f"Question: {question}\n\nDate/time processing result: {datetime_result}\n\nBased on this information, provide your final answer using the format: FINAL ANSWER: [your answer]"
|
260 |
+
except Exception as e:
|
261 |
+
print(f"DateTime processing error: {e}")
|
262 |
+
|
263 |
+
# Check if this needs web search
|
264 |
+
elif self._needs_web_search(question):
|
265 |
+
try:
|
266 |
+
search_result = self._search_web(question)
|
267 |
+
return f"Question: {question}\n\nWeb search results:\n{search_result}\n\nBased on this information, provide your final answer using the format: FINAL ANSWER: [your answer]"
|
268 |
+
except Exception as e:
|
269 |
+
print(f"Web search error: {e}")
|
270 |
+
|
271 |
+
# For other questions, just add the format instruction
|
272 |
+
return f"Question: {question}\n\nProvide your final answer using the format: FINAL ANSWER: [your answer]"
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
print(f"Question enhancement error: {e}")
|
276 |
+
return f"Question: {question}\n\nProvide your final answer using the format: FINAL ANSWER: [your answer]"
|
277 |
+
|
278 |
+
def _needs_web_search(self, text: str) -> bool:
|
279 |
+
"""Check if the question likely needs web search"""
|
280 |
+
search_indicators = [
|
281 |
+
'who', 'what', 'when', 'where', 'which', 'published', 'article',
|
282 |
+
'wikipedia', 'latest', 'recent', 'current', 'news', 'website',
|
283 |
+
'url', 'http', 'www', 'competition', 'olympics', 'award',
|
284 |
+
'winner', 'recipient', 'author', 'published in', 'paper',
|
285 |
+
'study', 'research', 'species', 'city', 'country'
|
286 |
+
]
|
287 |
+
text_lower = text.lower()
|
288 |
+
return any(indicator in text_lower for indicator in search_indicators)
|
289 |
+
|
290 |
def _extract_final_answer(self, response: str) -> str:
|
291 |
"""Extract the final answer from the response"""
|
292 |
if "FINAL ANSWER:" in response:
|