Spaces:
Sleeping
Sleeping
import os | |
import re | |
from datetime import datetime, timedelta | |
from typing import TypedDict, Annotated | |
import sympy as sp | |
from sympy import * | |
import math | |
from langchain_openai import ChatOpenAI | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_core.messages import HumanMessage, SystemMessage | |
from langgraph.graph import StateGraph, MessagesState, START, END | |
from langgraph.prebuilt import ToolNode | |
from langgraph.checkpoint.memory import MemorySaver | |
import json | |
# Load environment variables | |
from dotenv import load_dotenv | |
load_dotenv() | |
def read_system_prompt(): | |
"""Read the system prompt from file""" | |
try: | |
with open('system_prompt.txt', 'r') as f: | |
return f.read().strip() | |
except FileNotFoundError: | |
return """You are a helpful assistant tasked with answering questions using a set of tools. | |
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: | |
FINAL ANSWER: [YOUR FINAL ANSWER]. | |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. | |
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.""" | |
def math_calculator(expression: str) -> str: | |
""" | |
Advanced mathematical calculator that can handle complex expressions, | |
equations, symbolic math, calculus, and more using SymPy. | |
""" | |
try: | |
# Clean the expression | |
expression = expression.strip() | |
# Handle common mathematical operations and functions | |
expression = expression.replace('^', '**') # Convert ^ to ** | |
expression = expression.replace('ln', 'log') # Natural log | |
# Try to evaluate as a symbolic expression first | |
try: | |
result = sp.sympify(expression) | |
# If it's a symbolic expression that can be simplified | |
simplified = sp.simplify(result) | |
# Try to get numerical value | |
try: | |
numerical = float(simplified.evalf()) | |
return str(numerical) | |
except: | |
return str(simplified) | |
except: | |
# Fall back to basic evaluation | |
# Replace common math functions | |
safe_expression = expression | |
for func in ['sin', 'cos', 'tan', 'sqrt', 'log', 'exp', 'abs']: | |
safe_expression = safe_expression.replace(func, f'math.{func}') | |
# Evaluate safely | |
result = eval(safe_expression, {"__builtins__": {}}, { | |
"math": math, | |
"pi": math.pi, | |
"e": math.e | |
}) | |
return str(result) | |
except Exception as e: | |
return f"Error calculating '{expression}': {str(e)}" | |
def date_time_processor(query: str) -> str: | |
""" | |
Process date and time related queries, calculations, and conversions. | |
""" | |
try: | |
current_time = datetime.now() | |
query_lower = query.lower() | |
# Current date/time queries | |
if 'current' in query_lower or 'today' in query_lower or 'now' in query_lower: | |
if 'date' in query_lower: | |
return current_time.strftime('%Y-%m-%d') | |
elif 'time' in query_lower: | |
return current_time.strftime('%H:%M:%S') | |
else: | |
return current_time.strftime('%Y-%m-%d %H:%M:%S') | |
# Day of week queries | |
if 'day of week' in query_lower or 'what day' in query_lower: | |
return current_time.strftime('%A') | |
# Year queries | |
if 'year' in query_lower and 'current' in query_lower: | |
return str(current_time.year) | |
# Month queries | |
if 'month' in query_lower and 'current' in query_lower: | |
return current_time.strftime('%B') | |
# Date arithmetic (simple cases) | |
if 'days ago' in query_lower: | |
days_match = re.search(r'(\d+)\s+days?\s+ago', query_lower) | |
if days_match: | |
days = int(days_match.group(1)) | |
past_date = current_time - timedelta(days=days) | |
return past_date.strftime('%Y-%m-%d') | |
if 'days from now' in query_lower or 'days later' in query_lower: | |
days_match = re.search(r'(\d+)\s+days?\s+(?:from now|later)', query_lower) | |
if days_match: | |
days = int(days_match.group(1)) | |
future_date = current_time + timedelta(days=days) | |
return future_date.strftime('%Y-%m-%d') | |
# If no specific pattern matched, return current datetime | |
return f"Current date and time: {current_time.strftime('%Y-%m-%d %H:%M:%S')}" | |
except Exception as e: | |
return f"Error processing date/time query: {str(e)}" | |
# Define the agent state | |
class AgentState(TypedDict): | |
messages: Annotated[list, "The messages in the conversation"] | |
class GAIAAgent: | |
def __init__(self): | |
# Check for required API keys | |
openai_key = os.getenv("OPENAI_API_KEY") | |
tavily_key = os.getenv("TAVILY_API_KEY") | |
if not openai_key: | |
raise ValueError("OPENAI_API_KEY environment variable is required") | |
if not tavily_key: | |
raise ValueError("TAVILY_API_KEY environment variable is required") | |
print("✅ API keys found - initializing agent...") | |
# Initialize LLM (using OpenAI GPT-4) | |
self.llm = ChatOpenAI( | |
model="gpt-4o-mini", | |
temperature=0, | |
openai_api_key=openai_key | |
) | |
# Initialize tools | |
self.search_tool = TavilySearchResults( | |
max_results=5, | |
tavily_api_key=tavily_key | |
) | |
# Create tool list | |
self.tools = [self.search_tool] | |
# Create LLM with tools | |
self.llm_with_tools = self.llm.bind_tools(self.tools) | |
# Build the graph | |
self.graph = self._build_graph() | |
self.system_prompt = read_system_prompt() | |
def _build_graph(self): | |
"""Build the LangGraph workflow""" | |
def agent_node(state: AgentState): | |
"""Main agent reasoning node""" | |
messages = state["messages"] | |
# Add system message if not present | |
if not any(isinstance(msg, SystemMessage) for msg in messages): | |
system_msg = SystemMessage(content=self.system_prompt) | |
messages = [system_msg] + messages | |
# Get the last human message to check if it needs special processing | |
last_human_msg = None | |
for msg in reversed(messages): | |
if isinstance(msg, HumanMessage): | |
last_human_msg = msg.content | |
break | |
# Check if this is a math problem | |
if last_human_msg and self._is_math_problem(last_human_msg): | |
math_result = math_calculator(last_human_msg) | |
enhanced_msg = f"Math calculation result: {math_result}\n\nOriginal question: {last_human_msg}\n\nProvide your final answer based on this calculation." | |
messages[-1] = HumanMessage(content=enhanced_msg) | |
# Check if this is a date/time problem | |
elif last_human_msg and self._is_datetime_problem(last_human_msg): | |
datetime_result = date_time_processor(last_human_msg) | |
enhanced_msg = f"Date/time processing result: {datetime_result}\n\nOriginal question: {last_human_msg}\n\nProvide your final answer based on this information." | |
messages[-1] = HumanMessage(content=enhanced_msg) | |
response = self.llm_with_tools.invoke(messages) | |
return {"messages": messages + [response]} | |
def tool_node(state: AgentState): | |
"""Tool execution node""" | |
messages = state["messages"] | |
last_message = messages[-1] | |
# Execute tool calls | |
tool_node_instance = ToolNode(self.tools) | |
result = tool_node_instance.invoke(state) | |
return result | |
def should_continue(state: AgentState): | |
"""Decide whether to continue or end""" | |
last_message = state["messages"][-1] | |
# If the last message has tool calls, continue to tools | |
if hasattr(last_message, 'tool_calls') and last_message.tool_calls: | |
return "tools" | |
# If we have a final answer, end | |
if hasattr(last_message, 'content') and "FINAL ANSWER:" in last_message.content: | |
return "end" | |
# Otherwise continue | |
return "end" | |
# Build the graph | |
workflow = StateGraph(AgentState) | |
# Add nodes | |
workflow.add_node("agent", agent_node) | |
workflow.add_node("tools", tool_node) | |
# Add edges | |
workflow.add_edge(START, "agent") | |
workflow.add_conditional_edges("agent", should_continue, { | |
"tools": "tools", | |
"end": END | |
}) | |
workflow.add_edge("tools", "agent") | |
# Compile | |
memory = MemorySaver() | |
return workflow.compile(checkpointer=memory) | |
def _is_math_problem(self, text: str) -> bool: | |
"""Check if the text contains mathematical expressions""" | |
math_indicators = [ | |
'+', '-', '*', '/', '^', '=', 'calculate', 'compute', | |
'solve', 'equation', 'integral', 'derivative', 'sum', | |
'sqrt', 'log', 'sin', 'cos', 'tan', 'exp' | |
] | |
text_lower = text.lower() | |
return any(indicator in text_lower for indicator in math_indicators) or \ | |
re.search(r'\d+[\+\-\*/\^]\d+', text) is not None | |
def _is_datetime_problem(self, text: str) -> bool: | |
"""Check if the text contains date/time related queries""" | |
datetime_indicators = [ | |
'date', 'time', 'day', 'month', 'year', 'today', 'yesterday', | |
'tomorrow', 'current', 'now', 'ago', 'later', 'when' | |
] | |
text_lower = text.lower() | |
return any(indicator in text_lower for indicator in datetime_indicators) | |
def __call__(self, question: str) -> str: | |
"""Process a question and return the answer""" | |
try: | |
print(f"Processing question: {question[:100]}...") | |
# Create initial state | |
initial_state = { | |
"messages": [HumanMessage(content=question)] | |
} | |
# Run the graph | |
config = {"configurable": {"thread_id": "gaia_thread"}} | |
final_state = self.graph.invoke(initial_state, config) | |
# Extract the final answer | |
last_message = final_state["messages"][-1] | |
response_content = last_message.content if hasattr(last_message, 'content') else str(last_message) | |
# Extract just the final answer part | |
final_answer = self._extract_final_answer(response_content) | |
print(f"Final answer: {final_answer}") | |
return final_answer | |
except Exception as e: | |
print(f"Error processing question: {e}") | |
return f"Error: {str(e)}" | |
def _extract_final_answer(self, response: str) -> str: | |
"""Extract the final answer from the response""" | |
if "FINAL ANSWER:" in response: | |
# Find the final answer part | |
parts = response.split("FINAL ANSWER:") | |
if len(parts) > 1: | |
answer = parts[-1].strip() | |
# Remove any trailing punctuation or explanations | |
answer = answer.split('\n')[0].strip() | |
return answer | |
# If no FINAL ANSWER format found, return the whole response | |
return response.strip() | |
# Create a function to get the agent (for use in app.py) | |
def create_agent(): | |
"""Factory function to create the GAIA agent""" | |
return GAIAAgent() |