File size: 12,648 Bytes
ba23032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os
import re
from datetime import datetime, timedelta
from typing import TypedDict, Annotated
import sympy as sp
from sympy import *
import math
from langchain_openai import ChatOpenAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage
from langgraph.graph import StateGraph, MessagesState, START, END
from langgraph.prebuilt import ToolNode
from langgraph.checkpoint.memory import MemorySaver
import json

# Load environment variables
from dotenv import load_dotenv
load_dotenv()

def read_system_prompt():
    """Read the system prompt from file"""
    try:
        with open('system_prompt.txt', 'r') as f:
            return f.read().strip()
    except FileNotFoundError:
        return """You are a helpful assistant tasked with answering questions using a set of tools. 
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: 
FINAL ANSWER: [YOUR FINAL ANSWER]. 
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer."""

def math_calculator(expression: str) -> str:
    """
    Advanced mathematical calculator that can handle complex expressions,
    equations, symbolic math, calculus, and more using SymPy.
    """
    try:
        # Clean the expression
        expression = expression.strip()
        
        # Handle common mathematical operations and functions
        expression = expression.replace('^', '**')  # Convert ^ to **
        expression = expression.replace('ln', 'log')  # Natural log
        
        # Try to evaluate as a symbolic expression first
        try:
            result = sp.sympify(expression)
            
            # If it's a symbolic expression that can be simplified
            simplified = sp.simplify(result)
            
            # Try to get numerical value
            try:
                numerical = float(simplified.evalf())
                return str(numerical)
            except:
                return str(simplified)
                
        except:
            # Fall back to basic evaluation
            # Replace common math functions
            safe_expression = expression
            for func in ['sin', 'cos', 'tan', 'sqrt', 'log', 'exp', 'abs']:
                safe_expression = safe_expression.replace(func, f'math.{func}')
            
            # Evaluate safely
            result = eval(safe_expression, {"__builtins__": {}}, {
                "math": math,
                "pi": math.pi,
                "e": math.e
            })
            return str(result)
            
    except Exception as e:
        return f"Error calculating '{expression}': {str(e)}"

def date_time_processor(query: str) -> str:
    """
    Process date and time related queries, calculations, and conversions.
    """
    try:
        current_time = datetime.now()
        query_lower = query.lower()
        
        # Current date/time queries
        if 'current' in query_lower or 'today' in query_lower or 'now' in query_lower:
            if 'date' in query_lower:
                return current_time.strftime('%Y-%m-%d')
            elif 'time' in query_lower:
                return current_time.strftime('%H:%M:%S')
            else:
                return current_time.strftime('%Y-%m-%d %H:%M:%S')
        
        # Day of week queries
        if 'day of week' in query_lower or 'what day' in query_lower:
            return current_time.strftime('%A')
        
        # Year queries
        if 'year' in query_lower and 'current' in query_lower:
            return str(current_time.year)
        
        # Month queries
        if 'month' in query_lower and 'current' in query_lower:
            return current_time.strftime('%B')
        
        # Date arithmetic (simple cases)
        if 'days ago' in query_lower:
            days_match = re.search(r'(\d+)\s+days?\s+ago', query_lower)
            if days_match:
                days = int(days_match.group(1))
                past_date = current_time - timedelta(days=days)
                return past_date.strftime('%Y-%m-%d')
        
        if 'days from now' in query_lower or 'days later' in query_lower:
            days_match = re.search(r'(\d+)\s+days?\s+(?:from now|later)', query_lower)
            if days_match:
                days = int(days_match.group(1))
                future_date = current_time + timedelta(days=days)
                return future_date.strftime('%Y-%m-%d')
        
        # If no specific pattern matched, return current datetime
        return f"Current date and time: {current_time.strftime('%Y-%m-%d %H:%M:%S')}"
        
    except Exception as e:
        return f"Error processing date/time query: {str(e)}"

# Define the agent state
class AgentState(TypedDict):
    messages: Annotated[list, "The messages in the conversation"]

class GAIAAgent:
    def __init__(self):
        # Check for required API keys
        openai_key = os.getenv("OPENAI_API_KEY")
        tavily_key = os.getenv("TAVILY_API_KEY")
        
        if not openai_key:
            raise ValueError("OPENAI_API_KEY environment variable is required")
        if not tavily_key:
            raise ValueError("TAVILY_API_KEY environment variable is required")
        
        print("✅ API keys found - initializing agent...")
        
        # Initialize LLM (using OpenAI GPT-4)
        self.llm = ChatOpenAI(
            model="gpt-4o-mini",
            temperature=0,
            openai_api_key=openai_key
        )
        
        # Initialize tools
        self.search_tool = TavilySearchResults(
            max_results=5,
            tavily_api_key=tavily_key
        )
        
        # Create tool list
        self.tools = [self.search_tool]
        
        # Create LLM with tools
        self.llm_with_tools = self.llm.bind_tools(self.tools)
        
        # Build the graph
        self.graph = self._build_graph()
        
        self.system_prompt = read_system_prompt()

    def _build_graph(self):
        """Build the LangGraph workflow"""
        
        def agent_node(state: AgentState):
            """Main agent reasoning node"""
            messages = state["messages"]
            
            # Add system message if not present
            if not any(isinstance(msg, SystemMessage) for msg in messages):
                system_msg = SystemMessage(content=self.system_prompt)
                messages = [system_msg] + messages
            
            # Get the last human message to check if it needs special processing
            last_human_msg = None
            for msg in reversed(messages):
                if isinstance(msg, HumanMessage):
                    last_human_msg = msg.content
                    break
            
            # Check if this is a math problem
            if last_human_msg and self._is_math_problem(last_human_msg):
                math_result = math_calculator(last_human_msg)
                enhanced_msg = f"Math calculation result: {math_result}\n\nOriginal question: {last_human_msg}\n\nProvide your final answer based on this calculation."
                messages[-1] = HumanMessage(content=enhanced_msg)
            
            # Check if this is a date/time problem
            elif last_human_msg and self._is_datetime_problem(last_human_msg):
                datetime_result = date_time_processor(last_human_msg)
                enhanced_msg = f"Date/time processing result: {datetime_result}\n\nOriginal question: {last_human_msg}\n\nProvide your final answer based on this information."
                messages[-1] = HumanMessage(content=enhanced_msg)
            
            response = self.llm_with_tools.invoke(messages)
            return {"messages": messages + [response]}
        
        def tool_node(state: AgentState):
            """Tool execution node"""
            messages = state["messages"]
            last_message = messages[-1]
            
            # Execute tool calls
            tool_node_instance = ToolNode(self.tools)
            result = tool_node_instance.invoke(state)
            return result
        
        def should_continue(state: AgentState):
            """Decide whether to continue or end"""
            last_message = state["messages"][-1]
            
            # If the last message has tool calls, continue to tools
            if hasattr(last_message, 'tool_calls') and last_message.tool_calls:
                return "tools"
            
            # If we have a final answer, end
            if hasattr(last_message, 'content') and "FINAL ANSWER:" in last_message.content:
                return "end"
            
            # Otherwise continue
            return "end"
        
        # Build the graph
        workflow = StateGraph(AgentState)
        
        # Add nodes
        workflow.add_node("agent", agent_node)
        workflow.add_node("tools", tool_node)
        
        # Add edges
        workflow.add_edge(START, "agent")
        workflow.add_conditional_edges("agent", should_continue, {
            "tools": "tools",
            "end": END
        })
        workflow.add_edge("tools", "agent")
        
        # Compile
        memory = MemorySaver()
        return workflow.compile(checkpointer=memory)
    
    def _is_math_problem(self, text: str) -> bool:
        """Check if the text contains mathematical expressions"""
        math_indicators = [
            '+', '-', '*', '/', '^', '=', 'calculate', 'compute', 
            'solve', 'equation', 'integral', 'derivative', 'sum',
            'sqrt', 'log', 'sin', 'cos', 'tan', 'exp'
        ]
        text_lower = text.lower()
        return any(indicator in text_lower for indicator in math_indicators) or \
               re.search(r'\d+[\+\-\*/\^]\d+', text) is not None
    
    def _is_datetime_problem(self, text: str) -> bool:
        """Check if the text contains date/time related queries"""
        datetime_indicators = [
            'date', 'time', 'day', 'month', 'year', 'today', 'yesterday', 
            'tomorrow', 'current', 'now', 'ago', 'later', 'when'
        ]
        text_lower = text.lower()
        return any(indicator in text_lower for indicator in datetime_indicators)
    
    def __call__(self, question: str) -> str:
        """Process a question and return the answer"""
        try:
            print(f"Processing question: {question[:100]}...")
            
            # Create initial state
            initial_state = {
                "messages": [HumanMessage(content=question)]
            }
            
            # Run the graph
            config = {"configurable": {"thread_id": "gaia_thread"}}
            final_state = self.graph.invoke(initial_state, config)
            
            # Extract the final answer
            last_message = final_state["messages"][-1]
            response_content = last_message.content if hasattr(last_message, 'content') else str(last_message)
            
            # Extract just the final answer part
            final_answer = self._extract_final_answer(response_content)
            
            print(f"Final answer: {final_answer}")
            return final_answer
            
        except Exception as e:
            print(f"Error processing question: {e}")
            return f"Error: {str(e)}"
    
    def _extract_final_answer(self, response: str) -> str:
        """Extract the final answer from the response"""
        if "FINAL ANSWER:" in response:
            # Find the final answer part
            parts = response.split("FINAL ANSWER:")
            if len(parts) > 1:
                answer = parts[-1].strip()
                # Remove any trailing punctuation or explanations
                answer = answer.split('\n')[0].strip()
                return answer
        
        # If no FINAL ANSWER format found, return the whole response
        return response.strip()

# Create a function to get the agent (for use in app.py)
def create_agent():
    """Factory function to create the GAIA agent"""
    return GAIAAgent()