Spaces:
Sleeping
Sleeping
File size: 12,648 Bytes
ba23032 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import os
import re
from datetime import datetime, timedelta
from typing import TypedDict, Annotated
import sympy as sp
from sympy import *
import math
from langchain_openai import ChatOpenAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import HumanMessage, SystemMessage
from langgraph.graph import StateGraph, MessagesState, START, END
from langgraph.prebuilt import ToolNode
from langgraph.checkpoint.memory import MemorySaver
import json
# Load environment variables
from dotenv import load_dotenv
load_dotenv()
def read_system_prompt():
"""Read the system prompt from file"""
try:
with open('system_prompt.txt', 'r') as f:
return f.read().strip()
except FileNotFoundError:
return """You are a helpful assistant tasked with answering questions using a set of tools.
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer."""
def math_calculator(expression: str) -> str:
"""
Advanced mathematical calculator that can handle complex expressions,
equations, symbolic math, calculus, and more using SymPy.
"""
try:
# Clean the expression
expression = expression.strip()
# Handle common mathematical operations and functions
expression = expression.replace('^', '**') # Convert ^ to **
expression = expression.replace('ln', 'log') # Natural log
# Try to evaluate as a symbolic expression first
try:
result = sp.sympify(expression)
# If it's a symbolic expression that can be simplified
simplified = sp.simplify(result)
# Try to get numerical value
try:
numerical = float(simplified.evalf())
return str(numerical)
except:
return str(simplified)
except:
# Fall back to basic evaluation
# Replace common math functions
safe_expression = expression
for func in ['sin', 'cos', 'tan', 'sqrt', 'log', 'exp', 'abs']:
safe_expression = safe_expression.replace(func, f'math.{func}')
# Evaluate safely
result = eval(safe_expression, {"__builtins__": {}}, {
"math": math,
"pi": math.pi,
"e": math.e
})
return str(result)
except Exception as e:
return f"Error calculating '{expression}': {str(e)}"
def date_time_processor(query: str) -> str:
"""
Process date and time related queries, calculations, and conversions.
"""
try:
current_time = datetime.now()
query_lower = query.lower()
# Current date/time queries
if 'current' in query_lower or 'today' in query_lower or 'now' in query_lower:
if 'date' in query_lower:
return current_time.strftime('%Y-%m-%d')
elif 'time' in query_lower:
return current_time.strftime('%H:%M:%S')
else:
return current_time.strftime('%Y-%m-%d %H:%M:%S')
# Day of week queries
if 'day of week' in query_lower or 'what day' in query_lower:
return current_time.strftime('%A')
# Year queries
if 'year' in query_lower and 'current' in query_lower:
return str(current_time.year)
# Month queries
if 'month' in query_lower and 'current' in query_lower:
return current_time.strftime('%B')
# Date arithmetic (simple cases)
if 'days ago' in query_lower:
days_match = re.search(r'(\d+)\s+days?\s+ago', query_lower)
if days_match:
days = int(days_match.group(1))
past_date = current_time - timedelta(days=days)
return past_date.strftime('%Y-%m-%d')
if 'days from now' in query_lower or 'days later' in query_lower:
days_match = re.search(r'(\d+)\s+days?\s+(?:from now|later)', query_lower)
if days_match:
days = int(days_match.group(1))
future_date = current_time + timedelta(days=days)
return future_date.strftime('%Y-%m-%d')
# If no specific pattern matched, return current datetime
return f"Current date and time: {current_time.strftime('%Y-%m-%d %H:%M:%S')}"
except Exception as e:
return f"Error processing date/time query: {str(e)}"
# Define the agent state
class AgentState(TypedDict):
messages: Annotated[list, "The messages in the conversation"]
class GAIAAgent:
def __init__(self):
# Check for required API keys
openai_key = os.getenv("OPENAI_API_KEY")
tavily_key = os.getenv("TAVILY_API_KEY")
if not openai_key:
raise ValueError("OPENAI_API_KEY environment variable is required")
if not tavily_key:
raise ValueError("TAVILY_API_KEY environment variable is required")
print("✅ API keys found - initializing agent...")
# Initialize LLM (using OpenAI GPT-4)
self.llm = ChatOpenAI(
model="gpt-4o-mini",
temperature=0,
openai_api_key=openai_key
)
# Initialize tools
self.search_tool = TavilySearchResults(
max_results=5,
tavily_api_key=tavily_key
)
# Create tool list
self.tools = [self.search_tool]
# Create LLM with tools
self.llm_with_tools = self.llm.bind_tools(self.tools)
# Build the graph
self.graph = self._build_graph()
self.system_prompt = read_system_prompt()
def _build_graph(self):
"""Build the LangGraph workflow"""
def agent_node(state: AgentState):
"""Main agent reasoning node"""
messages = state["messages"]
# Add system message if not present
if not any(isinstance(msg, SystemMessage) for msg in messages):
system_msg = SystemMessage(content=self.system_prompt)
messages = [system_msg] + messages
# Get the last human message to check if it needs special processing
last_human_msg = None
for msg in reversed(messages):
if isinstance(msg, HumanMessage):
last_human_msg = msg.content
break
# Check if this is a math problem
if last_human_msg and self._is_math_problem(last_human_msg):
math_result = math_calculator(last_human_msg)
enhanced_msg = f"Math calculation result: {math_result}\n\nOriginal question: {last_human_msg}\n\nProvide your final answer based on this calculation."
messages[-1] = HumanMessage(content=enhanced_msg)
# Check if this is a date/time problem
elif last_human_msg and self._is_datetime_problem(last_human_msg):
datetime_result = date_time_processor(last_human_msg)
enhanced_msg = f"Date/time processing result: {datetime_result}\n\nOriginal question: {last_human_msg}\n\nProvide your final answer based on this information."
messages[-1] = HumanMessage(content=enhanced_msg)
response = self.llm_with_tools.invoke(messages)
return {"messages": messages + [response]}
def tool_node(state: AgentState):
"""Tool execution node"""
messages = state["messages"]
last_message = messages[-1]
# Execute tool calls
tool_node_instance = ToolNode(self.tools)
result = tool_node_instance.invoke(state)
return result
def should_continue(state: AgentState):
"""Decide whether to continue or end"""
last_message = state["messages"][-1]
# If the last message has tool calls, continue to tools
if hasattr(last_message, 'tool_calls') and last_message.tool_calls:
return "tools"
# If we have a final answer, end
if hasattr(last_message, 'content') and "FINAL ANSWER:" in last_message.content:
return "end"
# Otherwise continue
return "end"
# Build the graph
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)
# Add edges
workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", should_continue, {
"tools": "tools",
"end": END
})
workflow.add_edge("tools", "agent")
# Compile
memory = MemorySaver()
return workflow.compile(checkpointer=memory)
def _is_math_problem(self, text: str) -> bool:
"""Check if the text contains mathematical expressions"""
math_indicators = [
'+', '-', '*', '/', '^', '=', 'calculate', 'compute',
'solve', 'equation', 'integral', 'derivative', 'sum',
'sqrt', 'log', 'sin', 'cos', 'tan', 'exp'
]
text_lower = text.lower()
return any(indicator in text_lower for indicator in math_indicators) or \
re.search(r'\d+[\+\-\*/\^]\d+', text) is not None
def _is_datetime_problem(self, text: str) -> bool:
"""Check if the text contains date/time related queries"""
datetime_indicators = [
'date', 'time', 'day', 'month', 'year', 'today', 'yesterday',
'tomorrow', 'current', 'now', 'ago', 'later', 'when'
]
text_lower = text.lower()
return any(indicator in text_lower for indicator in datetime_indicators)
def __call__(self, question: str) -> str:
"""Process a question and return the answer"""
try:
print(f"Processing question: {question[:100]}...")
# Create initial state
initial_state = {
"messages": [HumanMessage(content=question)]
}
# Run the graph
config = {"configurable": {"thread_id": "gaia_thread"}}
final_state = self.graph.invoke(initial_state, config)
# Extract the final answer
last_message = final_state["messages"][-1]
response_content = last_message.content if hasattr(last_message, 'content') else str(last_message)
# Extract just the final answer part
final_answer = self._extract_final_answer(response_content)
print(f"Final answer: {final_answer}")
return final_answer
except Exception as e:
print(f"Error processing question: {e}")
return f"Error: {str(e)}"
def _extract_final_answer(self, response: str) -> str:
"""Extract the final answer from the response"""
if "FINAL ANSWER:" in response:
# Find the final answer part
parts = response.split("FINAL ANSWER:")
if len(parts) > 1:
answer = parts[-1].strip()
# Remove any trailing punctuation or explanations
answer = answer.split('\n')[0].strip()
return answer
# If no FINAL ANSWER format found, return the whole response
return response.strip()
# Create a function to get the agent (for use in app.py)
def create_agent():
"""Factory function to create the GAIA agent"""
return GAIAAgent() |