Spaces:
Running
Running
update scripts
Browse files- src/leaderboard/load_results.py +17 -19
src/leaderboard/load_results.py
CHANGED
@@ -18,24 +18,22 @@ def load_data(data_path):
|
|
18 |
for df_tmp in [df_m3exam, df_mmlu, df_avg]:
|
19 |
df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']] *= 100
|
20 |
df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']] = df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']].round(2)
|
21 |
-
df_tmp['rank'] = df_tmp['
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
# df_mmlu['type'] = df_mmlu['type'].map({'base': '🟢', 'chat': '🔶'})
|
39 |
-
# df_avg['type'] = df_avg['type'].map({'base': '🟢', 'chat': '🔶'})
|
40 |
|
41 |
return df_m3exam, df_mmlu, df_avg
|
|
|
18 |
for df_tmp in [df_m3exam, df_mmlu, df_avg]:
|
19 |
df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']] *= 100
|
20 |
df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']] = df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']].round(2)
|
21 |
+
df_tmp['rank'] = df_tmp['avg_sea'].rank(ascending=False).astype(int)
|
22 |
+
df_tmp = df_tmp[columns_sorted]
|
23 |
+
|
24 |
+
# sort the DataFrames by the 'avg_sea' column in descending order
|
25 |
+
df_m3exam = df_m3exam.sort_values(by='avg_sea', ascending=False)
|
26 |
+
df_mmlu = df_mmlu.sort_values(by='avg_sea', ascending=False)
|
27 |
+
df_avg = df_avg.sort_values(by='avg_sea', ascending=False)
|
28 |
+
|
29 |
+
# change the column name from 'avg_sea' to 'avg_sea⬆️'
|
30 |
+
df_m3exam = df_m3exam.rename(columns={'avg_sea': 'avg_sea⬆️'})
|
31 |
+
df_mmlu = df_mmlu.rename(columns={'avg_sea': 'avg_sea⬆️'})
|
32 |
+
df_avg = df_avg.rename(columns={'avg_sea': 'avg_sea⬆️'})
|
33 |
+
|
34 |
+
# map the values in the 'type' column to the following values: {'base': 'Base', 'chat': 'Chat'}
|
35 |
+
df_m3exam['type'] = df_m3exam['type'].map({'base': '🟢', 'chat': '🔶'})
|
36 |
+
df_mmlu['type'] = df_mmlu['type'].map({'base': '🟢', 'chat': '🔶'})
|
37 |
+
df_avg['type'] = df_avg['type'].map({'base': '🟢', 'chat': '🔶'})
|
|
|
|
|
38 |
|
39 |
return df_m3exam, df_mmlu, df_avg
|