lukecq commited on
Commit
993709c
·
1 Parent(s): 8baedda

update scripts

Browse files
src/display/about.py CHANGED
@@ -20,8 +20,8 @@ TITLE = """<h1 align="center" id="space-title">SeaExam Leaderboard</h1>"""
20
 
21
  # What does your leaderboard evaluate?
22
  INTRODUCTION_TEXT = """
23
- 🟢: pre-trained
24
- 🔶: fine-tuned
25
  """
26
 
27
  # Which evaluations are you running? how can people reproduce what you have?
 
20
 
21
  # What does your leaderboard evaluate?
22
  INTRODUCTION_TEXT = """
23
+ 🟢: base
24
+ 🔶: chat
25
  """
26
 
27
  # Which evaluations are you running? how can people reproduce what you have?
src/leaderboard/load_results.py CHANGED
@@ -4,6 +4,8 @@ def load_data(data_path):
4
  df = pd.read_csv(data_path, skiprows=1, header=0).dropna()
5
 
6
  columns = ['Model', 'type', 'open?', 'shot', 'en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']
 
 
7
 
8
  # Splitting into three separate DataFrames based on the groups M3Exam and MMLU and average
9
  df_m3exam = df.iloc[:, :11] # M3Exam columns
@@ -17,22 +19,23 @@ def load_data(data_path):
17
  df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']] *= 100
18
  df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']] = df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']].round(2)
19
  df_tmp['rank'] = df_tmp['avg'].rank(ascending=False).astype(int)
20
-
21
- # change the order of the columns to ['Model', 'type', 'open?', 'shot', 'avg', 'avg_sea', 'en', 'zh', 'id', 'th', 'vi']
22
- # and sort the columns by 'avg' in descending order
23
- columns_sorted = ['rank','type', 'Model', 'open?', 'shot', 'avg', 'avg_sea', 'en', 'zh', 'id', 'th', 'vi']
24
- df_m3exam = df_m3exam[columns_sorted].sort_values(by='avg', ascending=False)
25
- df_mmlu = df_mmlu[columns_sorted].sort_values(by='avg', ascending=False)
26
- df_avg = df_avg[columns_sorted].sort_values(by='avg', ascending=False)
27
-
28
- # change the column name from 'avg' to 'avg⬆️'
29
- df_m3exam = df_m3exam.rename(columns={'avg': 'avg⬆️'})
30
- df_mmlu = df_mmlu.rename(columns={'avg': 'avg⬆️'})
31
- df_avg = df_avg.rename(columns={'avg': 'avg⬆️'})
32
-
33
- # map the values in the 'type' column to the following values: {'base': 'Base', 'chat': 'Chat'}
34
- df_m3exam['type'] = df_m3exam['type'].map({'base': '🟢', 'chat': '🔶'})
35
- df_mmlu['type'] = df_mmlu['type'].map({'base': '🟢', 'chat': '🔶'})
36
- df_avg['type'] = df_avg['type'].map({'base': '🟢', 'chat': '🔶'})
37
-
 
38
  return df_m3exam, df_mmlu, df_avg
 
4
  df = pd.read_csv(data_path, skiprows=1, header=0).dropna()
5
 
6
  columns = ['Model', 'type', 'open?', 'shot', 'en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']
7
+ columns_sorted = ['rank','type', 'Model', 'open?', 'shot', 'avg', 'avg_sea', 'en', 'zh', 'id', 'th', 'vi']
8
+
9
 
10
  # Splitting into three separate DataFrames based on the groups M3Exam and MMLU and average
11
  df_m3exam = df.iloc[:, :11] # M3Exam columns
 
19
  df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']] *= 100
20
  df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']] = df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']].round(2)
21
  df_tmp['rank'] = df_tmp['avg'].rank(ascending=False).astype(int)
22
+
23
+ df_tmp = df_tmp[columns_sorted].sort_values(by='avg_sea', ascending=False)
24
+ df_tmp = df_tmp.rename(columns={'avg_sea': 'avg_sea⬆️'})
25
+ df_tmp['type'] = df_tmp['type'].map({'base': '🟢', 'chat': '🔶'})
26
+
27
+ # df_m3exam = df_m3exam[columns_sorted].sort_values(by='avg_sea', ascending=False)
28
+ # df_mmlu = df_mmlu[columns_sorted].sort_values(by='avg', ascending=False)
29
+ # df_avg = df_avg[columns_sorted].sort_values(by='avg', ascending=False)
30
+
31
+ # # change the column name from 'avg' to 'avg⬆️'
32
+ # df_m3exam = df_m3exam.rename(columns={'avg': 'avg⬆️'})
33
+ # df_mmlu = df_mmlu.rename(columns={'avg': 'avg⬆️'})
34
+ # df_avg = df_avg.rename(columns={'avg': 'avg⬆️'})
35
+
36
+ # # map the values in the 'type' column to the following values: {'base': 'Base', 'chat': 'Chat'}
37
+ # df_m3exam['type'] = df_m3exam['type'].map({'base': '🟢', 'chat': '🔶'})
38
+ # df_mmlu['type'] = df_mmlu['type'].map({'base': '🟢', 'chat': '🔶'})
39
+ # df_avg['type'] = df_avg['type'].map({'base': '🟢', 'chat': '🔶'})
40
+
41
  return df_m3exam, df_mmlu, df_avg