Spaces:
Sleeping
Sleeping
File size: 15,197 Bytes
44d13aa 5312fc3 44d13aa 99171fa 5312fc3 a847100 5312fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
from typing import Protocol, runtime_checkable
import pytest
from unittest.mock import MagicMock, patch
from io import BytesIO
#from PIL import Image
import datetime
import numpy as np
#from streamlit.runtime.uploaded_file_manager import UploadedFile # for type hinting
#from typing import List, Union
from input.input_observation import InputObservation
@runtime_checkable
class UploadedFile(Protocol):
name: str
size: int
type: str
_file_urls: list
def getvalue(self) -> bytes: ...
def read(self) -> bytes: ...
class MockUploadedFile(BytesIO):
def __init__(self,
initial_bytes: bytes,
*, # enforce keyword-only arguments after now
name:str,
size:int,
type:str):
#super().__init__(*args, **kwargs)
super().__init__(initial_bytes)
self.name = name
self.size = size
self.type = type
self._file_urls = [None,]
@pytest.fixture
def mock_uploadedFile():
class MockGUIClass(MagicMock):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
name = kwargs.get('name', 'image2.jpg')
size = kwargs.get('size', 123456)
type = kwargs.get('type', 'image/jpeg')
self.bytes_io = MockUploadedFile(
b"test data", name=name, size=size, type=type)
self.get_data = MagicMock(return_value=self.bytes_io)
return MockGUIClass
# let's first generate a test for the mock_uploaded_file and MockUploadedFile class
# - test with valid input
def test_mock_uploaded_file(mock_uploadedFile):
# setup values for the test (all valid)
image_name = "test_image.jpg"
mock_file = mock_uploadedFile(name=image_name).get_data()
#print(dir(mock_file))
assert isinstance(mock_file, BytesIO)
assert mock_file.name == image_name
assert mock_file.size == 123456
assert mock_file.type == "image/jpeg"
# now we move on to test the class InputObservation
# - with valid input
# - with invalid input
# - with missing input
def test_input_observation_valid(mock_uploadedFile):
# image: ndarray
# lat, lon: float
# author_email: str
# date, time: datetime.date, datetime.time
#uploaded_file: UploadedFile (need to mock this)
# image_md5: str
# setup values for the test (all valid)
author_email = "[email protected]"
image_name = "test_image.jpg"
mock_file = mock_uploadedFile(name=image_name).get_data()
_date="2023-10-10"
_time="10:10:10"
image_datetime_raw = _date + " " + _time
dt = datetime.datetime.strptime(image_datetime_raw, "%Y-%m-%d %H:%M:%S")
date = dt.date()
time = dt.time()
## make a random image with dtype uint8 using np.random.randint
image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
image_md5 = 'd1d2515e6f6ac4c5ca6dd739d5143cd4' # 32 hex chars.
obs = InputObservation(
image=image,
latitude=12.34, longitude=56.78, author_email=author_email,
time=time, date=date,
uploaded_file=mock_file,
image_md5=image_md5,
)
assert isinstance(obs.image, np.ndarray)
assert (obs.image == image).all()
assert obs.latitude == 12.34
assert obs.longitude == 56.78
assert obs.author_email == author_email
assert isinstance(obs.date, datetime.date)
assert isinstance(obs.time, datetime.time)
assert str(obs.date) == "2023-10-10"
assert str(obs.time) == "10:10:10"
assert obs.uploaded_file.name == image_name
assert obs.uploaded_file.size == 123456
assert obs.uploaded_file.type == "image/jpeg"
assert isinstance(obs.uploaded_file, BytesIO)
#assert isinstance(obs.uploaded_file, MockUploadedFile) # is there any point in checking the type of the mock, ?
# a list of tuples (strings that are the keys of "valid_inputs", expected error type)
# loop over the list, and for each tuple, create a dictionary with all valid inputs, and one invalid input
# assert that the function raises the expected error type
invalid_input_scenarios = [
("author_email", TypeError),
("image_name", TypeError),
("uploaded_file", TypeError),
("date", TypeError),
("time", TypeError),
("image", TypeError),
("image_md5", TypeError),
]
@pytest.mark.parametrize("key, error_type", invalid_input_scenarios)
def test_input_observation_invalid(key, error_type, mock_uploadedFile):
# correct datatypes are:
# - image: ndarray
# - lat, lon: float
# - author_email: str
# - date, time: datetime.date, datetime.time
# - uploaded_file: UploadedFile (need to mock this)
# - image_md5: str
# the most critical/likely to go wrong would presumably be
# - date, time (strings not datetime objects)
# - lat, lon (strings not numbers)
# - image (not ndarray, maybe accidentally a PIL object or maybe the filename)
# - uploaded_file (not UploadedFile, maybe a string, or maybe the ndarray)
# check it fails when any of the datatypes are wrong,
# even if the rest are all good want to loop over the inputs, take each one
# from a bad list, and all others from a good list, and assert fails for
# each one
# set up the good and bad inputs
_date="2023-10-10"
_time="10:10:10"
image_datetime_raw = _date + " " + _time
fname = "test_image.jpg"
image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
dt_ok = datetime.datetime.strptime(image_datetime_raw, "%Y-%m-%d %H:%M:%S")
valid_inputs = {
"author_email": "[email protected]",
"image_name": "test_image.jpg",
"uploaded_file": mock_uploadedFile(name=fname).get_data(),
"date": dt_ok.date(),
"time": dt_ok.time(),
"image": image,
"image_md5": 'd1d2515e6f6ac4c5ca6dd739d5143cd4', # 32 hex chars.
}
invalid_inputs = {
"author_email": "@example",
"image_name": 45,
"uploaded_file": image,
"date": _date,
"time": _time,
"image": fname,
"image_md5": 45643
}
# test a valid set of inputs, minus the target key, substituted for something invalid
inputs = valid_inputs.copy()
inputs[key] = invalid_inputs[key]
with pytest.raises(error_type):
obs = InputObservation(**inputs)
# now test the same key set to None
inputs = valid_inputs.copy()
inputs[key] = None
with pytest.raises(error_type):
obs = InputObservation(**inputs)
# we can take a similar approach to test equality.
# here, construct two dicts, each with valid inputs but all elements different.
# loop over the keys, and construct two InputObservations that differ on that key only.
# asser the expected output message.
# ah, it is the diff func that prints a message. Here we just assert boolean.
# we currently expect differences on time to be ignored.
inequality_keys = [
("author_email", False),
("uploaded_file", False),
("date", False),
#("time", True),
pytest.param("time", False, marks=pytest.mark.xfail(reason="Time is currently ignored in __eq__")),
("image", False),
("image_md5", False),
]
@pytest.mark.parametrize("key, expect_equality", inequality_keys)
def test_input_observation_equality(key, expect_equality, mock_uploadedFile):
# set up the two sets of good inputs
_date1 = "2023-10-10"
_time1 = "10:10:10"
image_datetime_raw1 = _date1 + " " + _time1
fname1 = "test_image.jpg"
image1 = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
dt1 = datetime.datetime.strptime(image_datetime_raw1, "%Y-%m-%d %H:%M:%S")
_date2 = "2023-10-11"
_time2 = "12:13:14"
image_datetime_raw2 = _date2 + " " + _time2
fname2 = "test_image.jpg"
image2 = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
dt2 = datetime.datetime.strptime(image_datetime_raw2, "%Y-%m-%d %H:%M:%S")
valid_inputs1 = {
"author_email": "[email protected]",
#"image_name": "test_image.jpg",
"uploaded_file": mock_uploadedFile(name=fname1).get_data(),
"date": dt1.date(),
"time": dt1.time(),
"image": image1,
"image_md5": 'd1d2515e6f6ac4c5ca6dd739d5143cd4', # 32 hex chars.
}
valid_inputs2 = {
"author_email": "[email protected]",
#"image_name": "another.jpg",
"uploaded_file": mock_uploadedFile(name=fname2).get_data(),
"date": dt2.date(),
"time": dt2.time(),
"image": image2,
"image_md5": 'cdb235587bdee5915d6ccfa52ca9f3ac', # 32 hex chars.
}
nearly_same_inputs = valid_inputs1.copy()
nearly_same_inputs[key] = valid_inputs2[key]
obs1 = InputObservation(**valid_inputs1)
obs2 = InputObservation(**nearly_same_inputs)
if expect_equality is True:
assert obs1 == obs2
else:
assert obs1 != obs2
# now let's test the setter methods (set_top_predictions, set_selected_class, set_class_overriden)
# ideally we get a fixture that produces a good / valid InputObservation object
# and from there, just test the setters + their expected changes / side effects
@pytest.fixture
def good_datadict_for_input_observation(mock_uploadedFile) -> dict:
# set up the good and bad inputs
_date="2023-10-10"
_time="10:10:10"
image_datetime_raw = _date + " " + _time
fname = "test_image.jpg"
image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
dt_ok = datetime.datetime.strptime(image_datetime_raw, "%Y-%m-%d %H:%M:%S")
valid_inputs = {
"author_email": "[email protected]",
"uploaded_file": mock_uploadedFile(name=fname).get_data(),
"date": dt_ok.date(),
"time": dt_ok.time(),
"image": image,
"image_md5": 'd1d2515e6f6ac4c5ca6dd739d5143cd4', # 32 hex chars.
"image_datetime_raw": image_datetime_raw,
"latitude": 12.34,
"longitude": 56.78,
}
return valid_inputs
@pytest.fixture
def good_input_observation(good_datadict_for_input_observation) -> InputObservation:
observation = InputObservation(**good_datadict_for_input_observation)
return observation
#
def test_input_observation__set_top_predictions_populated(good_input_observation):
obs = good_input_observation
# before setting, expect empty list
assert obs.top_predictions == []
assert obs.selected_class == None
# set >0,
# - expect to find the same list in the property/attribute
# - expect to find the first element in the selected_class
top_predictions = ["beluga", "blue_whale", "common_dolphin"]
obs.set_top_predictions(top_predictions)
assert len(obs.top_predictions) == 3
assert obs.top_predictions == top_predictions
assert obs.selected_class == "beluga"
def test_input_observation__set_top_predictions_unpopulated(good_input_observation):
obs = good_input_observation
# before setting, expect empty list
assert obs.top_predictions == []
assert obs.selected_class == None
# set to empty list,
# - expect to find the same list in the property/attribute
# - expect to find selected_class to be None
top_predictions = []
obs.set_top_predictions(top_predictions)
assert len(obs.top_predictions) == 0
assert obs.top_predictions == []
assert obs.selected_class == None
def test_input_observation__set_selected_class_default(good_input_observation):
obs = good_input_observation
# before setting, expect empty list
assert obs.top_predictions == []
assert obs.selected_class == None
assert obs.class_overriden == False
# set >0, and then set_selected_class to the first element
# - expect to find the same list in the property/attribute
# - expect to find the first element in the selected_class
# - expect class_overriden to be False
top_predictions = ["beluga", "blue_whale", "common_dolphin"]
obs.set_top_predictions(top_predictions)
obs.set_selected_class(top_predictions[0])
assert len(obs.top_predictions) == 3
assert obs.top_predictions == top_predictions
assert obs.selected_class == "beluga"
def test_input_observation__set_selected_class_override(good_input_observation):
obs = good_input_observation
# before setting, expect empty list
assert obs.top_predictions == []
assert obs.selected_class == None
assert obs.class_overriden == False
# set >0, and then set_selected_class to something out of list
# - expect to find the same list in the property/attribute
# - expect to find the first element in the selected_class
# - expect class_overriden to be False
top_predictions = ["beluga", "blue_whale", "common_dolphin"]
obs.set_top_predictions(top_predictions)
obs.set_selected_class("brydes_whale")
assert len(obs.top_predictions) == 3
assert obs.top_predictions == top_predictions
assert obs.selected_class == "brydes_whale"
assert obs.class_overriden == True
# now we want to test to_dict, make sure it is compliant with the data to be
# transmitted to the dataset/server
def test_input_observation_to_dict(good_datadict_for_input_observation):
obs = InputObservation(**good_datadict_for_input_observation)
# set >0, and then set_selected_class to something out of list
# - expect to find the same list in the property/attribute
# - expect to find the first element in the selected_class
# - expect class_overriden to be False
top_predictions = ["beluga", "blue_whale", "common_dolphin"]
selected = "brydes_whale"
obs.set_top_predictions(top_predictions)
obs.set_selected_class(selected)
# as a first point, we expect the dict to be like the input dict...
expected_output = good_datadict_for_input_observation.copy()
# ... with a few changes
# - date and time get converted to str(date) str(time)
expected_output["date"] = str(expected_output["date"])
expected_output["time"] = str(expected_output["time"])
# - image_filename comes from uploaded_file.name
expected_output["image_filename"] = expected_output["uploaded_file"].name
# - uploaded_file and image are not in the transmitted data
del expected_output["uploaded_file"]
del expected_output["image"]
# - the classification results should be as set above
expected_output["top_prediction"] = top_predictions[0]
expected_output["selected_class"] = selected
expected_output["class_overriden"] = True
print(obs.to_dict())
assert obs.to_dict() == expected_output
# expected = {
# 'image_filename': 'test_image.jpg', 'image_md5':
# 'd1d2515e6f6ac4c5ca6dd739d5143cd4', 'latitude': 12.34, 'longitude':
# 56.78, 'author_email': '[email protected]', 'image_datetime_raw':
# '2023-10-10 10:10:10', 'date': '2023-10-10', 'time': '10:10:10',
# 'selected_class': 'brydes_whale', 'top_prediction': 'beluga',
# 'class_overriden': True
# }
|