rmm commited on
Commit
99171fa
·
1 Parent(s): 44d13aa

test: InputObservation with valid and invalid inputs

Browse files
Files changed (1) hide show
  1. tests/test_input_observation.py +133 -0
tests/test_input_observation.py CHANGED
@@ -65,3 +65,136 @@ def test_mock_uploaded_file(mock_uploadedFile):
65
  assert mock_file.name == image_name
66
  assert mock_file.size == 123456
67
  assert mock_file.type == "image/jpeg"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  assert mock_file.name == image_name
66
  assert mock_file.size == 123456
67
  assert mock_file.type == "image/jpeg"
68
+
69
+
70
+ # now we move on to test the class InputObservation
71
+ # - with valid input
72
+ # - with invalid input
73
+ # - with missing input
74
+
75
+ def test_input_observation_valid(mock_uploadedFile):
76
+ # image: ndarray
77
+ # lat, lon: float
78
+ # author_email: str
79
+ # date, time: datetime.date, datetime.time
80
+ #uploaded_file: UploadedFile (need to mock this)
81
+ # image_md5: str
82
+
83
+ # setup values for the test (all valid)
84
+
85
+ author_email = "[email protected]"
86
+ image_name = "test_image.jpg"
87
+ mock_file = mock_uploadedFile(name=image_name).get_data()
88
+
89
+ _date="2023-10-10"
90
+ _time="10:10:10"
91
+ image_datetime_raw = _date + " " + _time
92
+ dt = datetime.datetime.strptime(image_datetime_raw, "%Y-%m-%d %H:%M:%S")
93
+ date = dt.date()
94
+ time = dt.time()
95
+
96
+ ## make a random image with dtype uint8 using np.random.randint
97
+ image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
98
+ image_md5 = 'd1d2515e6f6ac4c5ca6dd739d5143cd4' # 32 hex chars.
99
+
100
+ obs = InputObservation(
101
+ image=image,
102
+ latitude=12.34, longitude=56.78, author_email=author_email,
103
+ time=time, date=date,
104
+ uploaded_file=mock_file,
105
+ image_md5=image_md5,
106
+ )
107
+
108
+ assert isinstance(obs.image, np.ndarray)
109
+ assert (obs.image == image).all()
110
+
111
+ assert obs.latitude == 12.34
112
+ assert obs.longitude == 56.78
113
+ assert obs.author_email == author_email
114
+ assert isinstance(obs.date, datetime.date)
115
+ assert isinstance(obs.time, datetime.time)
116
+ assert str(obs.date) == "2023-10-10"
117
+ assert str(obs.time) == "10:10:10"
118
+
119
+ assert obs.uploaded_file.name == image_name
120
+ assert obs.uploaded_file.size == 123456
121
+ assert obs.uploaded_file.type == "image/jpeg"
122
+
123
+ assert isinstance(obs.uploaded_file, BytesIO)
124
+ #assert isinstance(obs.uploaded_file, MockUploadedFile) # is there any point in checking the type of the mock, ?
125
+
126
+
127
+ # a list of tuples (strings that are the keys of "valid_inputs", expected error type)
128
+ # loop over the list, and for each tuple, create a dictionary with all valid inputs, and one invalid input
129
+ # assert that the function raises the expected error type
130
+
131
+ invalid_input_scenarios = [
132
+ ("author_email", TypeError),
133
+ ("image_name", TypeError),
134
+ ("uploaded_file", TypeError),
135
+ ("date", TypeError),
136
+ ("time", TypeError),
137
+ ("image", TypeError),
138
+ ("image_md5", TypeError),
139
+ ]
140
+
141
+ @pytest.mark.parametrize("key, error_type", invalid_input_scenarios)
142
+ def test_input_observation_invalid(key, error_type, mock_uploadedFile):
143
+ # correct datatypes are:
144
+ # - image: ndarray
145
+ # - lat, lon: float
146
+ # - author_email: str
147
+ # - date, time: datetime.date, datetime.time
148
+ # - uploaded_file: UploadedFile (need to mock this)
149
+ # - image_md5: str
150
+
151
+ # the most critical/likely to go wrong would presumably be
152
+ # - date, time (strings not datetime objects)
153
+ # - lat, lon (strings not numbers)
154
+ # - image (not ndarray, maybe accidentally a PIL object or maybe the filename)
155
+ # - uploaded_file (not UploadedFile, maybe a string, or maybe the ndarray)
156
+
157
+ # check it fails when any of the datatypes are wrong,
158
+ # even if the rest are all good want to loop over the inputs, take each one
159
+ # from a bad list, and all others from a good list, and assert fails for
160
+ # each one
161
+
162
+ # set up the good and bad inputs
163
+ _date="2023-10-10"
164
+ _time="10:10:10"
165
+ image_datetime_raw = _date + " " + _time
166
+ fname = "test_image.jpg"
167
+ image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
168
+
169
+ dt_ok = datetime.datetime.strptime(image_datetime_raw, "%Y-%m-%d %H:%M:%S")
170
+ valid_inputs = {
171
+ "author_email": "[email protected]",
172
+ "image_name": "test_image.jpg",
173
+ "uploaded_file": mock_uploadedFile(name=fname).get_data(),
174
+ "date": dt_ok.date(),
175
+ "time": dt_ok.time(),
176
+ "image": image,
177
+ "image_md5": 'd1d2515e6f6ac4c5ca6dd739d5143cd4', # 32 hex chars.
178
+ }
179
+ invalid_inputs = {
180
+ "author_email": "@example",
181
+ "image_name": 45,
182
+ "uploaded_file": image,
183
+ "date": _date,
184
+ "time": _time,
185
+ "image": fname,
186
+ "image_md5": 45643
187
+ }
188
+
189
+ # test a valid set of inputs, minus the target key, substituted for something invalid
190
+ inputs = valid_inputs.copy()
191
+ inputs[key] = invalid_inputs[key]
192
+
193
+ with pytest.raises(error_type):
194
+ obs = InputObservation(**inputs)
195
+
196
+ # now test the same key set to None
197
+ inputs = valid_inputs.copy()
198
+ inputs[key] = None
199
+ with pytest.raises(error_type):
200
+ obs = InputObservation(**inputs)