|
|
|
|
|
|
|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import mediapipe as mp |
|
from fpdf import FPDF |
|
import os |
|
|
|
mp_face_mesh = mp.solutions.face_mesh |
|
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) |
|
|
|
def estimate_heart_rate(frame, landmarks): |
|
h, w, _ = frame.shape |
|
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]] |
|
mask = np.zeros((h, w), dtype=np.uint8) |
|
pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32) |
|
cv2.fillConvexPoly(mask, pts, 255) |
|
green_channel = cv2.split(frame)[1] |
|
mean_intensity = cv2.mean(green_channel, mask=mask)[0] |
|
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi)) |
|
return heart_rate |
|
|
|
def estimate_spo2_rr(heart_rate): |
|
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2))) |
|
rr = int(12 + abs(heart_rate % 5 - 2)) |
|
return spo2, rr |
|
|
|
def get_risk_color(value, normal_range): |
|
low, high = normal_range |
|
if value < low: |
|
return ("Low", "π»", "#FFCCCC") |
|
elif value > high: |
|
return ("High", "πΊ", "#FFE680") |
|
else: |
|
return ("Normal", "β
", "#CCFFCC") |
|
|
|
def generate_pdf_report(image, results_dict, summary_text): |
|
pdf = FPDF() |
|
pdf.add_page() |
|
pdf.set_font("Arial", "B", 16) |
|
pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C') |
|
|
|
if image is not None: |
|
img_path = "patient_face.jpg" |
|
cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) |
|
pdf.image(img_path, x=80, y=25, w=50) |
|
os.remove(img_path) |
|
pdf.ln(60) |
|
|
|
pdf.set_font("Arial", "B", 12) |
|
pdf.cell(0, 10, "Results Summary", ln=True) |
|
pdf.set_font("Arial", "", 10) |
|
|
|
for key, val in results_dict.items(): |
|
if isinstance(val, (int, float)): |
|
pdf.cell(0, 8, f"{key}: {val}", ln=True) |
|
|
|
pdf.ln(5) |
|
pdf.set_font("Arial", "B", 12) |
|
pdf.cell(0, 10, "AI Summary (English)", ln=True) |
|
pdf.set_font("Arial", "", 10) |
|
for line in summary_text.split("<li>"): |
|
if "</li>" in line: |
|
clean = line.split("</li>")[0].strip() |
|
pdf.multi_cell(0, 8, f"- {clean}") |
|
|
|
output_path = "/mnt/data/SL_Diagnostics_Face_Scan_Report.pdf" |
|
pdf.output(output_path) |
|
return output_path |
|
|
|
|
|
def app(): |
|
def process(image): |
|
if image is None: |
|
return "Please upload a face image.", None, None |
|
|
|
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
result = face_mesh.process(frame_rgb) |
|
if not result.multi_face_landmarks: |
|
return "Face not detected.", None, None |
|
|
|
landmarks = result.multi_face_landmarks[0].landmark |
|
heart_rate = estimate_heart_rate(frame_rgb, landmarks) |
|
spo2, rr = estimate_spo2_rr(heart_rate) |
|
|
|
results_dict = { |
|
'Hemoglobin': 12.3, |
|
'WBC Count': 6.4, |
|
'Platelets': 210, |
|
'Iron': 55, |
|
'Ferritin': 45, |
|
'TIBC': 340, |
|
'Bilirubin': 1.5, |
|
'Creatinine': 1.3, |
|
'TSH': 2.5, |
|
'Cortisol': 18, |
|
'Fasting Blood Sugar': 120, |
|
'HbA1c': 6.2, |
|
'SpO2': spo2, |
|
'Heart Rate': heart_rate, |
|
'Respiratory Rate': rr |
|
} |
|
|
|
summary_text = "<li>Your hemoglobin is a bit low...</li><li>Consider iron tests.</li>" |
|
pdf_path = generate_pdf_report(image, results_dict, summary_text) |
|
|
|
return "Preview complete. You can download your report.", frame_rgb, pdf_path |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("""# π§ Face-Based Lab Test AI Report""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="πΈ Upload Face", type="numpy") |
|
button = gr.Button("π Run Analysis") |
|
pdf_output = gr.File(label="π Download Report") |
|
with gr.Column(): |
|
note = gr.Textbox(label="Status") |
|
preview = gr.Image(label="Scan Preview") |
|
|
|
button.click(fn=process, inputs=image, outputs=[note, preview, pdf_output]) |
|
|
|
demo.launch() |
|
|
|
app() |
|
|