File size: 4,291 Bytes
eb3d3f0 efbd74c eb3d3f0 0983def eb3d3f0 efbd74c eb3d3f0 0983def eb3d3f0 7e2c1f5 eb3d3f0 7e2c1f5 accfefd 7e2c1f5 accfefd 7e2c1f5 accfefd efbd74c 77c7f70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# Face Detection-Based AI Automation of Lab Tests
# UI: Clean table, multilingual summary, PDF-ready
import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from fpdf import FPDF
import os
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
def estimate_heart_rate(frame, landmarks):
h, w, _ = frame.shape
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]]
mask = np.zeros((h, w), dtype=np.uint8)
pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32)
cv2.fillConvexPoly(mask, pts, 255)
green_channel = cv2.split(frame)[1]
mean_intensity = cv2.mean(green_channel, mask=mask)[0]
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi))
return heart_rate
def estimate_spo2_rr(heart_rate):
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
rr = int(12 + abs(heart_rate % 5 - 2))
return spo2, rr
def get_risk_color(value, normal_range):
low, high = normal_range
if value < low:
return ("Low", "π»", "#FFCCCC")
elif value > high:
return ("High", "πΊ", "#FFE680")
else:
return ("Normal", "β
", "#CCFFCC")
def generate_pdf_report(image, results_dict, summary_text):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", "B", 16)
pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C')
if image is not None:
img_path = "patient_face.jpg"
cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
pdf.image(img_path, x=80, y=25, w=50)
os.remove(img_path)
pdf.ln(60)
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "Results Summary", ln=True)
pdf.set_font("Arial", "", 10)
for key, val in results_dict.items():
if isinstance(val, (int, float)):
pdf.cell(0, 8, f"{key}: {val}", ln=True)
pdf.ln(5)
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "AI Summary (English)", ln=True)
pdf.set_font("Arial", "", 10)
for line in summary_text.split("<li>"):
if "</li>" in line:
clean = line.split("</li>")[0].strip()
pdf.multi_cell(0, 8, f"- {clean}")
output_path = "/mnt/data/SL_Diagnostics_Face_Scan_Report.pdf"
pdf.output(output_path)
return output_path
# Gradio UI (app launcher)
def app():
def process(image):
if image is None:
return "Please upload a face image.", None, None
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
result = face_mesh.process(frame_rgb)
if not result.multi_face_landmarks:
return "Face not detected.", None, None
landmarks = result.multi_face_landmarks[0].landmark
heart_rate = estimate_heart_rate(frame_rgb, landmarks)
spo2, rr = estimate_spo2_rr(heart_rate)
results_dict = {
'Hemoglobin': 12.3,
'WBC Count': 6.4,
'Platelets': 210,
'Iron': 55,
'Ferritin': 45,
'TIBC': 340,
'Bilirubin': 1.5,
'Creatinine': 1.3,
'TSH': 2.5,
'Cortisol': 18,
'Fasting Blood Sugar': 120,
'HbA1c': 6.2,
'SpO2': spo2,
'Heart Rate': heart_rate,
'Respiratory Rate': rr
}
summary_text = "<li>Your hemoglobin is a bit low...</li><li>Consider iron tests.</li>" # Placeholder
pdf_path = generate_pdf_report(image, results_dict, summary_text)
return "Preview complete. You can download your report.", frame_rgb, pdf_path
with gr.Blocks() as demo:
gr.Markdown("""# π§ Face-Based Lab Test AI Report""")
with gr.Row():
with gr.Column():
image = gr.Image(label="πΈ Upload Face", type="numpy")
button = gr.Button("π Run Analysis")
pdf_output = gr.File(label="π Download Report")
with gr.Column():
note = gr.Textbox(label="Status")
preview = gr.Image(label="Scan Preview")
button.click(fn=process, inputs=image, outputs=[note, preview, pdf_output])
demo.launch()
app()
|