|
import streamlit as st |
|
from transformers import pipeline |
|
from streamlit_echarts import st_echarts |
|
|
|
def project_ui(): |
|
|
|
model_name = "saved_model" |
|
classifier = pipeline("sentiment-analysis", model=model_name) |
|
|
|
|
|
st.title("Transformer-Based Text Classification") |
|
st.write(""" |
|
This app uses a pre-trained Transformer model to classify text. Enter your text below to get the classification result. |
|
""") |
|
|
|
|
|
user_input = st.text_area("Enter your text here", height=150) |
|
|
|
|
|
if st.button("Predict"): |
|
if user_input.strip(): |
|
try: |
|
|
|
predictions = classifier(user_input) |
|
|
|
|
|
label = predictions[0]['label'] |
|
score = predictions[0]['score'] |
|
|
|
|
|
if label == 'LABEL_0': |
|
negative_score = score |
|
positive_score = 1 - score |
|
else: |
|
positive_score = score |
|
negative_score = 1 - score |
|
|
|
|
|
if label == 'LABEL_0': |
|
st.error("Prediction: π Negative") |
|
else: |
|
st.success("Prediction: π Positive") |
|
|
|
st.write("### Sentiment Scores") |
|
st.write(f"Positive Score: {positive_score * 100:.2f}%") |
|
st.write(f"Negative Score: {negative_score * 100:.2f}%") |
|
|
|
|
|
options = { |
|
"series": [ |
|
{ |
|
"type": "gauge", |
|
"startAngle": 180, |
|
"endAngle": 0, |
|
"radius": "100%", |
|
"pointer": {"show": True, "length": "60%", "width": 5}, |
|
"progress": { |
|
"show": True, |
|
"overlap": False, |
|
"roundCap": True, |
|
"clip": False |
|
}, |
|
"axisLine": { |
|
"lineStyle": { |
|
"width": 10, |
|
"color": [ |
|
[0.5, "#FF6F61"], |
|
[1, "#6AA84F"] |
|
] |
|
} |
|
}, |
|
"axisTick": {"show": False}, |
|
"splitLine": {"show": False}, |
|
"axisLabel": {"distance": 15, "fontSize": 10}, |
|
"data": [ |
|
{"value": positive_score * 100, "name": "Positive"}, |
|
], |
|
"title": {"fontSize": 14}, |
|
"detail": { |
|
"valueAnimation": True, |
|
"formatter": "{value}%", |
|
"fontSize": 12 |
|
}, |
|
"animation": True, |
|
"animationDuration": 2000, |
|
"animationEasing": "cubicOut" |
|
} |
|
] |
|
} |
|
|
|
st.write("### Interactive Sentiment Analysis Indicator") |
|
st_echarts(options, height="300px") |
|
|
|
|
|
if score < 0.6: |
|
st.warning("The confidence level of the prediction is below 60%. The result may not be reliable.") |
|
|
|
except Exception as e: |
|
st.error(f"An error occurred during prediction: {e}") |
|
else: |
|
st.warning("Please enter some text for prediction.") |
|
|
|
|
|
if __name__ == "__main__": |
|
project_ui() |
|
|