import streamlit as st from transformers import pipeline from streamlit_echarts import st_echarts def project_ui(): # Load the pre-trained sentiment analysis model model_name = "saved_model" classifier = pipeline("sentiment-analysis", model=model_name) # App title and description st.title("Transformer-Based Text Classification") st.write(""" This app uses a pre-trained Transformer model to classify text. Enter your text below to get the classification result. """) # User input user_input = st.text_area("Enter your text here", height=150) # Prediction button if st.button("Predict"): if user_input.strip(): try: # Perform text classification predictions = classifier(user_input) # Extract label and score label = predictions[0]['label'] score = predictions[0]['score'] # Calculate positive and negative scores if label == 'LABEL_0': negative_score = score positive_score = 1 - score else: positive_score = score negative_score = 1 - score # Display sentiment prediction and scores if label == 'LABEL_0': st.error("Prediction: 😔 Negative") else: st.success("Prediction: 😊 Positive") st.write("### Sentiment Scores") st.write(f"Positive Score: {positive_score * 100:.2f}%") st.write(f"Negative Score: {negative_score * 100:.2f}%") # Display interactive sentiment analysis indicator options = { "series": [ { "type": "gauge", "startAngle": 180, "endAngle": 0, "radius": "100%", "pointer": {"show": True, "length": "60%", "width": 5}, "progress": { "show": True, "overlap": False, "roundCap": True, "clip": False }, "axisLine": { "lineStyle": { "width": 10, "color": [ [0.5, "#FF6F61"], # Negative (Red) [1, "#6AA84F"] # Positive (Green) ] } }, "axisTick": {"show": False}, "splitLine": {"show": False}, "axisLabel": {"distance": 15, "fontSize": 10}, "data": [ {"value": positive_score * 100, "name": "Positive"}, ], "title": {"fontSize": 14}, "detail": { "valueAnimation": True, "formatter": "{value}%", "fontSize": 12 }, "animation": True, # Enable animation "animationDuration": 2000, # Duration in ms "animationEasing": "cubicOut" # Smooth animation } ] } st.write("### Interactive Sentiment Analysis Indicator") st_echarts(options, height="300px") # Warning if confidence is below 60% if score < 0.6: st.warning("The confidence level of the prediction is below 60%. The result may not be reliable.") except Exception as e: st.error(f"An error occurred during prediction: {e}") else: st.warning("Please enter some text for prediction.") # Run the Streamlit app if __name__ == "__main__": project_ui()