|
import streamlit as st |
|
import pandas as pd |
|
import requests |
|
import joblib |
|
import json |
|
import os |
|
import numpy as np |
|
from sklearn.decomposition import PCA |
|
|
|
|
|
pca_path = "models/pca.pkl" |
|
local_model_path = "models/model.pkl" |
|
|
|
|
|
|
|
pca = joblib.load(pca_path) if os.path.exists(pca_path) else None |
|
local_model = joblib.load(local_model_path) if os.path.exists(local_model_path) else None |
|
|
|
|
|
MLFLOW_SERVER_URL = "http://127.0.0.1:8000/invocations" |
|
|
|
|
|
st.title("Imago AI Vomitoxin Prediction System") |
|
st.write("Upload a CSV file to predict vomitoxin levels in corn samples.") |
|
|
|
|
|
uploaded_file = st.file_uploader("Upload CSV File", type=["csv"]) |
|
|
|
|
|
def predict(data): |
|
"""Predict using MLflow server if available, else use local model.""" |
|
|
|
|
|
try: |
|
st.write("Checking MLflow Server...") |
|
|
|
|
|
json_data = json.dumps({"inputs": df.to_numpy().tolist()}) |
|
|
|
|
|
|
|
response = requests.post(MLFLOW_SERVER_URL, json={"inputs": json_data}) |
|
|
|
|
|
if response.status_code == 200: |
|
predictions = response.json() |
|
st.success("Prediction done using MLflow Server!") |
|
return np.array(predictions) |
|
else: |
|
st.warning("MLflow Server not responding. Falling back to local model.") |
|
|
|
except requests.exceptions.RequestException: |
|
st.warning("MLflow Server is not running. Using local model.") |
|
|
|
|
|
if local_model and pca: |
|
|
|
|
|
pca_data = pca.transform(data) |
|
|
|
|
|
predictions = local_model.predict(pca_data) |
|
st.success("Prediction done using Local Model!") |
|
return predictions |
|
else: |
|
st.error("No model available for prediction.") |
|
return None |
|
|
|
|
|
if uploaded_file: |
|
try: |
|
|
|
df = pd.read_csv(uploaded_file) |
|
|
|
|
|
if "hsi_id" not in df.columns: |
|
st.error("CSV file must contain `hsi_id` column.") |
|
else: |
|
|
|
X = df.drop(columns=["hsi_id"]) |
|
|
|
|
|
predictions = predict(X) |
|
|
|
if predictions is not None: |
|
|
|
df["vomitoxin_ppb"] = predictions |
|
|
|
|
|
df["Harmful"] = df["vomitoxin_ppb"].apply(lambda x: "⚠️ Yes" if x > 1000 else "✅ No") |
|
|
|
|
|
st.subheader("Prediction Results") |
|
st.write(df[["hsi_id", "vomitoxin_ppb", "Harmful"]]) |
|
|
|
|
|
st.subheader("Harmful Cases") |
|
harmful_df = df[df["vomitoxin_ppb"] > 1000] |
|
st.write(harmful_df[["hsi_id", "vomitoxin_ppb"]]) |
|
|
|
except Exception as e: |
|
st.error(f"Error processing file: {e}") |
|
|