Upload 4 files
Browse files- app.py +102 -0
- models/model.pkl +3 -0
- models/pca.pkl +3 -0
- models/tsne.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
import joblib
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import numpy as np
|
8 |
+
from sklearn.decomposition import PCA
|
9 |
+
|
10 |
+
# Load local model components
|
11 |
+
pca_path = "models/pca.pkl"
|
12 |
+
local_model_path = "models/model.pkl"
|
13 |
+
|
14 |
+
# Load models if they exist
|
15 |
+
|
16 |
+
pca = joblib.load(pca_path) if os.path.exists(pca_path) else None
|
17 |
+
local_model = joblib.load(local_model_path) if os.path.exists(local_model_path) else None
|
18 |
+
|
19 |
+
# MLflow Server Endpoint
|
20 |
+
MLFLOW_SERVER_URL = "http://127.0.0.1:8000/invocations"
|
21 |
+
|
22 |
+
# Streamlit UI
|
23 |
+
st.title("Imago AI Vomitoxin Prediction System")
|
24 |
+
st.write("Upload a CSV file to predict vomitoxin levels in corn samples.")
|
25 |
+
|
26 |
+
# Upload CSV File
|
27 |
+
uploaded_file = st.file_uploader("Upload CSV File", type=["csv"])
|
28 |
+
|
29 |
+
# Prediction Function
|
30 |
+
def predict(data):
|
31 |
+
"""Predict using MLflow server if available, else use local model."""
|
32 |
+
|
33 |
+
# Try MLflow first
|
34 |
+
try:
|
35 |
+
st.write("Checking MLflow Server...")
|
36 |
+
|
37 |
+
# Convert data to JSON format for MLflow
|
38 |
+
json_data = json.dumps({"inputs": df.to_numpy().tolist()}) # Convert to NumPy first
|
39 |
+
|
40 |
+
|
41 |
+
# Send request to MLflow
|
42 |
+
response = requests.post(MLFLOW_SERVER_URL, json={"inputs": json_data})
|
43 |
+
|
44 |
+
# If successful, return MLflow prediction
|
45 |
+
if response.status_code == 200:
|
46 |
+
predictions = response.json()
|
47 |
+
st.success("Prediction done using MLflow Server!")
|
48 |
+
return np.array(predictions)
|
49 |
+
else:
|
50 |
+
st.warning("MLflow Server not responding. Falling back to local model.")
|
51 |
+
|
52 |
+
except requests.exceptions.RequestException:
|
53 |
+
st.warning("MLflow Server is not running. Using local model.")
|
54 |
+
|
55 |
+
# If MLflow fails, use local model
|
56 |
+
if local_model and pca:
|
57 |
+
# Apply Scaling & PCA
|
58 |
+
# scaled_data = scaler.transform(data)
|
59 |
+
pca_data = pca.transform(data)
|
60 |
+
|
61 |
+
# Predict with local model
|
62 |
+
predictions = local_model.predict(pca_data)
|
63 |
+
st.success("Prediction done using Local Model!")
|
64 |
+
return predictions
|
65 |
+
else:
|
66 |
+
st.error("No model available for prediction.")
|
67 |
+
return None
|
68 |
+
|
69 |
+
# Process File & Predict
|
70 |
+
if uploaded_file:
|
71 |
+
try:
|
72 |
+
# Read CSV
|
73 |
+
df = pd.read_csv(uploaded_file)
|
74 |
+
|
75 |
+
# Ensure required columns exist
|
76 |
+
if "hsi_id" not in df.columns:
|
77 |
+
st.error("CSV file must contain `hsi_id` column.")
|
78 |
+
else:
|
79 |
+
# Extract Features (Drop hsi_id)
|
80 |
+
X = df.drop(columns=["hsi_id"])
|
81 |
+
|
82 |
+
# Make Predictions
|
83 |
+
predictions = predict(X)
|
84 |
+
|
85 |
+
if predictions is not None:
|
86 |
+
# Create output DataFrame
|
87 |
+
df["vomitoxin_ppb"] = predictions
|
88 |
+
|
89 |
+
# Mark Harmful Cases (vomitoxin > 1000)
|
90 |
+
df["Harmful"] = df["vomitoxin_ppb"].apply(lambda x: "⚠️ Yes" if x > 1000 else "✅ No")
|
91 |
+
|
92 |
+
# Display DataFrame
|
93 |
+
st.subheader("Prediction Results")
|
94 |
+
st.write(df[["hsi_id", "vomitoxin_ppb", "Harmful"]])
|
95 |
+
|
96 |
+
# Highlight Harmful Cases
|
97 |
+
st.subheader("Harmful Cases")
|
98 |
+
harmful_df = df[df["vomitoxin_ppb"] > 1000]
|
99 |
+
st.write(harmful_df[["hsi_id", "vomitoxin_ppb"]])
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
st.error(f"Error processing file: {e}")
|
models/model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1364d694a2903dbe637c0496b055c29eef75866bf2695f6e14654f955027ebd7
|
3 |
+
size 183743
|
models/pca.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1431b403e519ce7e0c8004d39e170470e12be008c2ee840d8c52d16b55fdb4a
|
3 |
+
size 17038
|
models/tsne.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d610993cd9dfe855a877a1ca6a3e219844e415a1e4af3c0afb8927cad11cd040
|
3 |
+
size 9679
|