Spaces:
Running
Running
File size: 3,105 Bytes
e3782c8 eac607d 46b4934 e3782c8 f0199d7 e3782c8 4474f90 e3782c8 c44b042 25a9047 754bdcf c44b042 e3782c8 4474f90 e70536d a07040e a8a8ca2 4474f90 e3782c8 4474f90 e3782c8 4474f90 e70536d e3782c8 b50dccc e3782c8 4474f90 e3782c8 c44b042 e3782c8 158f8e3 e3782c8 4aa5c7e e3782c8 4474f90 eac607d ba19394 eac607d e3782c8 eac607d 47dbbed ba19394 3b459bf 4474f90 c44b042 eac607d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from huggingface_hub import InferenceClient
from resume import data
import markdowm as md
import gradio as gr
import base64
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Chatbot response function with integrated system message
def respond(
message,
history: list[tuple[str, str]],
max_tokens=1024,
temperature=0.7,
top_p=0.95,
):
# System message defining assistant behavior
system_message = {
"role": "system",
"content": f"Act and chat as SARATH to thw user question. SARATH is a professional fresher seeking a job abd pursuing Btech-4-1. your name is SARATH."
f"Here is about SARATH:```{data}```. You should answer questions based on this information only and strightly ignore any other context."
f"strictly prohibit the random respons or output and speak in English"
}
messages = [system_message]
# Adding conversation history
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Adding the current user input
messages.append({"role": "user", "content": message})
response = ""
# Streaming the response from the API
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Encode the images
github_logo_encoded = encode_image("Images/github-logo.png")
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
website_logo_encoded = encode_image("Images/ai-logo.png")
# Gradio interface with additional sliders for control
with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Roboto Mono")])) as main:
gr.Markdown(md.title)
with gr.Tabs():
with gr.TabItem("Resume"):
gr.Markdown(data)
with gr.TabItem("My2.0"):
gr.ChatInterface(respond,
chatbot=gr.Chatbot(height=500),
examples=["Tell me about yourself sarath",
'Can you walk me through some of your recent projects and explain the role you played in each?',
"What specific skills do you bring to the table that would benefit our company's AI/ML initiatives?",
"How do you stay updated with the latest trends and advancements in AI and Machine Learning?" ],
)
gr.Markdown(md.description)
gr.Markdown(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
if __name__ == "__main__":
main.launch(share=True)
|