Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
9 |
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -15,18 +16,27 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
response = ""
|
29 |
|
|
|
30 |
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
@@ -35,30 +45,85 @@ def respond(
|
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
token = message.choices[0].delta.content
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
data = '''
|
5 |
+
SARATH CHANDRA BANDREDDI **Professional Summary** Intern-level Python Developer skilled in AI, Django, and web development. Proficient in Python and AI, dedicated to continuous learning. Keen to contribute to software solutions and collaborate in a team environment. **Education** B.Tech in Computer Science (AI & ML), Vasireddy Venkatadri Institute of Technology, India (2021–2025), GPA: 8.60 **Tech Stack** - **Languages**: Python, Java, JavaScript, C, R, Shell - **Frontend**: HTML, CSS, Jinja - **Libraries**: TensorFlow, Keras, LlamaIndex, OpenCV, Sklearn, Numpy, Pandas, Django - **Platforms**: Kaggle, Google-Colabs, Git, GitHub, AWS, Figma - **Databases**: SQL, Oracle, MySQL **Projects** - **Face Recognition** (VGGFace | TensorFlow, Keras, OpenCV, Django) Developed a face recognition app achieving 97.86% accuracy on a 31-class dataset. Launched through Django on an online server. - **SCRAM** (Gemini-pro LLM, Google API, TensorFlow, Django) Built a Django-based college resource management system with LLM chatbot, face recognition, and 2-FS authentication. - **Document & Data Query AI Agent** (Llama3, Ollama, LlamaIndex) Created an AI agent for document-based Q&A and CSV visualization, integrating NLP and data retrieval. **Certifications** Python: Kaggle, SoloLearn, HackerRank, GUVI ML: Coursera, Kaggle, Microsoft, IBM Deep Learning: NPTEL, Kaggle, IBM Django: Microsoft AWS: AWS Academy Cloud Foundations, Cloud Architecting NPTEL: Java (ELITE), Data Science (ELITE + SILVER) **Achievements** 2nd Place in Python Hackathon (15 colleges, RVR&JC) **Find Me Online** LinkedIn, GitHub, Kaggle, HackerRank, CodeChef, LeetCode, Portfolio
|
6 |
+
'''
|
|
|
7 |
|
8 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
10 |
+
# Chatbot response function with integrated system message
|
11 |
def respond(
|
12 |
message,
|
13 |
history: list[tuple[str, str]],
|
|
|
16 |
temperature,
|
17 |
top_p,
|
18 |
):
|
19 |
+
# System message defining assistant behavior
|
20 |
+
system_message = {
|
21 |
+
"role": "system",
|
22 |
+
"content": f"Act and chat as a professional fresher seeking a job and your name is SARATH. Here is about you: {data}. You should answer questions based on this information only."
|
23 |
+
}
|
24 |
+
|
25 |
+
messages = [system_message]
|
26 |
|
27 |
+
# Adding conversation history
|
28 |
for val in history:
|
29 |
if val[0]:
|
30 |
messages.append({"role": "user", "content": val[0]})
|
31 |
if val[1]:
|
32 |
messages.append({"role": "assistant", "content": val[1]})
|
33 |
|
34 |
+
# Adding the current user input
|
35 |
messages.append({"role": "user", "content": message})
|
36 |
|
37 |
response = ""
|
38 |
|
39 |
+
# Streaming the response from the API
|
40 |
for message in client.chat_completion(
|
41 |
messages,
|
42 |
max_tokens=max_tokens,
|
|
|
45 |
top_p=top_p,
|
46 |
):
|
47 |
token = message.choices[0].delta.content
|
|
|
48 |
response += token
|
49 |
yield response
|
50 |
|
51 |
|
52 |
+
# Gradio interface with additional sliders for control
|
|
|
|
|
53 |
demo = gr.ChatInterface(
|
54 |
respond,
|
55 |
additional_inputs=[
|
56 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
57 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
58 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
59 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
],
|
61 |
)
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
65 |
+
|
66 |
+
# import gradio as gr
|
67 |
+
# from huggingface_hub import InferenceClient
|
68 |
+
|
69 |
+
# """
|
70 |
+
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
71 |
+
# """
|
72 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
73 |
+
|
74 |
+
|
75 |
+
# def respond(
|
76 |
+
# message,
|
77 |
+
# history: list[tuple[str, str]],
|
78 |
+
# system_message,
|
79 |
+
# max_tokens,
|
80 |
+
# temperature,
|
81 |
+
# top_p,
|
82 |
+
# ):
|
83 |
+
# messages = [{"role": "system", "content": system_message}]
|
84 |
+
|
85 |
+
# for val in history:
|
86 |
+
# if val[0]:
|
87 |
+
# messages.append({"role": "user", "content": val[0]})
|
88 |
+
# if val[1]:
|
89 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
90 |
+
|
91 |
+
# messages.append({"role": "user", "content": message})
|
92 |
+
|
93 |
+
# response = ""
|
94 |
+
|
95 |
+
# for message in client.chat_completion(
|
96 |
+
# messages,
|
97 |
+
# max_tokens=max_tokens,
|
98 |
+
# stream=True,
|
99 |
+
# temperature=temperature,
|
100 |
+
# top_p=top_p,
|
101 |
+
# ):
|
102 |
+
# token = message.choices[0].delta.content
|
103 |
+
|
104 |
+
# response += token
|
105 |
+
# yield response
|
106 |
+
|
107 |
+
|
108 |
+
# """
|
109 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
110 |
+
# """
|
111 |
+
# demo = gr.ChatInterface(
|
112 |
+
# respond,
|
113 |
+
# additional_inputs=[
|
114 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
115 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
116 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
117 |
+
# gr.Slider(
|
118 |
+
# minimum=0.1,
|
119 |
+
# maximum=1.0,
|
120 |
+
# value=0.95,
|
121 |
+
# step=0.05,
|
122 |
+
# label="Top-p (nucleus sampling)",
|
123 |
+
# ),
|
124 |
+
# ],
|
125 |
+
# )
|
126 |
+
|
127 |
+
|
128 |
+
# if __name__ == "__main__":
|
129 |
+
# demo.launch()
|