File size: 2,032 Bytes
e3782c8
eac607d
 
 
e3782c8
4474f90
e3782c8
4474f90
e3782c8
c44b042
 
 
 
 
e3782c8
4474f90
 
eac607d
 
 
 
4474f90
 
 
e3782c8
4474f90
e3782c8
 
 
 
 
 
4474f90
e3782c8
 
3a844a3
e3782c8
4474f90
e3782c8
c44b042
 
 
 
 
e3782c8
 
158f8e3
e3782c8
 
 
4474f90
eac607d
 
 
 
 
 
 
e3782c8
eac607d
 
4474f90
c44b042
eac607d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from huggingface_hub import InferenceClient
from resume import data
import markdowm as md
import gradio as gr

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Chatbot response function with integrated system message
def respond(
        message,
        history: list[tuple[str, str]],
        max_tokens=1024,
        temperature=0.5,
        top_p=0.95,
):
    # System message defining assistant behavior
    system_message = {
        "role": "SARATH",
        "content": f"Act and chat as SARATH to thw user question. SARATH is a professional fresher seeking a job pursuing Btech-4-1 and your name is SARATH."
                   f"Here is about SARATH:```{data}```. You should answer questions based on this information only."
                   f"If the question is irreverent to the contex=[about sarath], polity reply the user"
    }

    messages = [system_message]

    # Adding conversation history
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    # Adding the current user input
    messages.append({"role": "user", "content": message})

    response = ''

    # Streaming the response from the API
    for message in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response


# Gradio interface with additional sliders for control
with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Roboto Mono")])) as main:
    gr.Markdown(md.title)
    with gr.Tabs():
        with gr.TabItem("Intro"):
            gr.Markdown(md.description)
            gr.Markdown("# Resume:")
            gr.Markdown(data)

        with gr.TabItem("My2.0"):
            gr.ChatInterface(respond)

if __name__ == "__main__":
    main.launch(share=True)