Spaces:
Running
Running
import os | |
import h5py | |
from functools import reduce | |
import torch.utils.data as data | |
from ..pose import generateSampleBox | |
from opt import opt | |
class Mscoco(data.Dataset): | |
def __init__(self, train=True, sigma=1, | |
scale_factor=(0.2, 0.3), rot_factor=40, label_type='Gaussian'): | |
self.img_folder = '../data/coco/images' # root image folders | |
self.is_train = train # training set or test set | |
self.inputResH = opt.inputResH | |
self.inputResW = opt.inputResW | |
self.outputResH = opt.outputResH | |
self.outputResW = opt.outputResW | |
self.sigma = sigma | |
self.scale_factor = scale_factor | |
self.rot_factor = rot_factor | |
self.label_type = label_type | |
self.nJoints_coco = 17 | |
self.nJoints_mpii = 16 | |
self.nJoints = 33 | |
self.accIdxs = (1, 2, 3, 4, 5, 6, 7, 8, | |
9, 10, 11, 12, 13, 14, 15, 16, 17) | |
self.flipRef = ((2, 3), (4, 5), (6, 7), | |
(8, 9), (10, 11), (12, 13), | |
(14, 15), (16, 17)) | |
# create train/val split | |
with h5py.File('../data/coco/annot_clean.h5', 'r') as annot: | |
# train | |
self.imgname_coco_train = annot['imgname'][:-5887] | |
self.bndbox_coco_train = annot['bndbox'][:-5887] | |
self.part_coco_train = annot['part'][:-5887] | |
# val | |
self.imgname_coco_val = annot['imgname'][-5887:] | |
self.bndbox_coco_val = annot['bndbox'][-5887:] | |
self.part_coco_val = annot['part'][-5887:] | |
self.size_train = self.imgname_coco_train.shape[0] | |
self.size_val = self.imgname_coco_val.shape[0] | |
def __getitem__(self, index): | |
sf = self.scale_factor | |
if self.is_train: | |
part = self.part_coco_train[index] | |
bndbox = self.bndbox_coco_train[index] | |
imgname = self.imgname_coco_train[index] | |
else: | |
part = self.part_coco_val[index] | |
bndbox = self.bndbox_coco_val[index] | |
imgname = self.imgname_coco_val[index] | |
imgname = reduce(lambda x, y: x + y, map(lambda x: chr(int(x)), imgname)) | |
img_path = os.path.join(self.img_folder, imgname) | |
metaData = generateSampleBox(img_path, bndbox, part, self.nJoints, | |
'coco', sf, self, train=self.is_train) | |
inp, out_bigcircle, out_smallcircle, out, setMask = metaData | |
label = [] | |
for i in range(opt.nStack): | |
if i < 2: | |
# label.append(out_bigcircle.clone()) | |
label.append(out.clone()) | |
elif i < 4: | |
# label.append(out_smallcircle.clone()) | |
label.append(out.clone()) | |
else: | |
label.append(out.clone()) | |
return inp, label, setMask, 'coco' | |
def __len__(self): | |
if self.is_train: | |
return self.size_train | |
else: | |
return self.size_val | |