Sapphire-356's picture
add: Video2MC
95f8bbc
import os
import h5py
from functools import reduce
import torch.utils.data as data
from ..pose import generateSampleBox
from opt import opt
class Mscoco(data.Dataset):
def __init__(self, train=True, sigma=1,
scale_factor=(0.2, 0.3), rot_factor=40, label_type='Gaussian'):
self.img_folder = '../data/coco/images' # root image folders
self.is_train = train # training set or test set
self.inputResH = opt.inputResH
self.inputResW = opt.inputResW
self.outputResH = opt.outputResH
self.outputResW = opt.outputResW
self.sigma = sigma
self.scale_factor = scale_factor
self.rot_factor = rot_factor
self.label_type = label_type
self.nJoints_coco = 17
self.nJoints_mpii = 16
self.nJoints = 33
self.accIdxs = (1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17)
self.flipRef = ((2, 3), (4, 5), (6, 7),
(8, 9), (10, 11), (12, 13),
(14, 15), (16, 17))
# create train/val split
with h5py.File('../data/coco/annot_clean.h5', 'r') as annot:
# train
self.imgname_coco_train = annot['imgname'][:-5887]
self.bndbox_coco_train = annot['bndbox'][:-5887]
self.part_coco_train = annot['part'][:-5887]
# val
self.imgname_coco_val = annot['imgname'][-5887:]
self.bndbox_coco_val = annot['bndbox'][-5887:]
self.part_coco_val = annot['part'][-5887:]
self.size_train = self.imgname_coco_train.shape[0]
self.size_val = self.imgname_coco_val.shape[0]
def __getitem__(self, index):
sf = self.scale_factor
if self.is_train:
part = self.part_coco_train[index]
bndbox = self.bndbox_coco_train[index]
imgname = self.imgname_coco_train[index]
else:
part = self.part_coco_val[index]
bndbox = self.bndbox_coco_val[index]
imgname = self.imgname_coco_val[index]
imgname = reduce(lambda x, y: x + y, map(lambda x: chr(int(x)), imgname))
img_path = os.path.join(self.img_folder, imgname)
metaData = generateSampleBox(img_path, bndbox, part, self.nJoints,
'coco', sf, self, train=self.is_train)
inp, out_bigcircle, out_smallcircle, out, setMask = metaData
label = []
for i in range(opt.nStack):
if i < 2:
# label.append(out_bigcircle.clone())
label.append(out.clone())
elif i < 4:
# label.append(out_smallcircle.clone())
label.append(out.clone())
else:
label.append(out.clone())
return inp, label, setMask, 'coco'
def __len__(self):
if self.is_train:
return self.size_train
else:
return self.size_val