import os import h5py from functools import reduce import torch.utils.data as data from ..pose import generateSampleBox from opt import opt class Mscoco(data.Dataset): def __init__(self, train=True, sigma=1, scale_factor=(0.2, 0.3), rot_factor=40, label_type='Gaussian'): self.img_folder = '../data/coco/images' # root image folders self.is_train = train # training set or test set self.inputResH = opt.inputResH self.inputResW = opt.inputResW self.outputResH = opt.outputResH self.outputResW = opt.outputResW self.sigma = sigma self.scale_factor = scale_factor self.rot_factor = rot_factor self.label_type = label_type self.nJoints_coco = 17 self.nJoints_mpii = 16 self.nJoints = 33 self.accIdxs = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17) self.flipRef = ((2, 3), (4, 5), (6, 7), (8, 9), (10, 11), (12, 13), (14, 15), (16, 17)) # create train/val split with h5py.File('../data/coco/annot_clean.h5', 'r') as annot: # train self.imgname_coco_train = annot['imgname'][:-5887] self.bndbox_coco_train = annot['bndbox'][:-5887] self.part_coco_train = annot['part'][:-5887] # val self.imgname_coco_val = annot['imgname'][-5887:] self.bndbox_coco_val = annot['bndbox'][-5887:] self.part_coco_val = annot['part'][-5887:] self.size_train = self.imgname_coco_train.shape[0] self.size_val = self.imgname_coco_val.shape[0] def __getitem__(self, index): sf = self.scale_factor if self.is_train: part = self.part_coco_train[index] bndbox = self.bndbox_coco_train[index] imgname = self.imgname_coco_train[index] else: part = self.part_coco_val[index] bndbox = self.bndbox_coco_val[index] imgname = self.imgname_coco_val[index] imgname = reduce(lambda x, y: x + y, map(lambda x: chr(int(x)), imgname)) img_path = os.path.join(self.img_folder, imgname) metaData = generateSampleBox(img_path, bndbox, part, self.nJoints, 'coco', sf, self, train=self.is_train) inp, out_bigcircle, out_smallcircle, out, setMask = metaData label = [] for i in range(opt.nStack): if i < 2: # label.append(out_bigcircle.clone()) label.append(out.clone()) elif i < 4: # label.append(out_smallcircle.clone()) label.append(out.clone()) else: label.append(out.clone()) return inp, label, setMask, 'coco' def __len__(self): if self.is_train: return self.size_train else: return self.size_val