Video2MC / model /stmo_pretrain.py
Sapphire-356's picture
add: Video2MC
95f8bbc
raw
history blame
5.52 kB
import torch
import torch.nn as nn
from model.block.vanilla_transformer_encoder_pretrain import Transformer, Transformer_dec
from model.block.strided_transformer_encoder import Transformer as Transformer_reduce
import numpy as np
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class Linear(nn.Module):
def __init__(self, linear_size, p_dropout=0.25):
super(Linear, self).__init__()
self.l_size = linear_size
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.dropout = nn.Dropout(p_dropout)
#self.w1 = nn.Linear(self.l_size, self.l_size)
self.w1 = nn.Conv1d(self.l_size, self.l_size, kernel_size=1)
self.batch_norm1 = nn.BatchNorm1d(self.l_size)
#self.w2 = nn.Linear(self.l_size, self.l_size)
self.w2 = nn.Conv1d(self.l_size, self.l_size, kernel_size=1)
self.batch_norm2 = nn.BatchNorm1d(self.l_size)
def forward(self, x):
y = self.w1(x)
y = self.batch_norm1(y)
y = self.relu(y)
y = self.dropout(y)
y = self.w2(y)
y = self.batch_norm2(y)
y = self.relu(y)
y = self.dropout(y)
out = x + y
return out
class FCBlock(nn.Module):
def __init__(self, channel_in, channel_out, linear_size, block_num):
super(FCBlock, self).__init__()
self.linear_size = linear_size
self.block_num = block_num
self.layers = []
self.channel_in = channel_in
self.stage_num = 3
self.p_dropout = 0.1
#self.fc_1 = nn.Linear(self.channel_in, self.linear_size)
self.fc_1 = nn.Conv1d(self.channel_in, self.linear_size, kernel_size=1)
self.bn_1 = nn.BatchNorm1d(self.linear_size)
for i in range(block_num):
self.layers.append(Linear(self.linear_size, self.p_dropout))
#self.fc_2 = nn.Linear(self.linear_size, channel_out)
self.fc_2 = nn.Conv1d(self.linear_size, channel_out, kernel_size=1)
self.layers = nn.ModuleList(self.layers)
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.dropout = nn.Dropout(self.p_dropout)
def forward(self, x):
x = self.fc_1(x)
x = self.bn_1(x)
x = self.relu(x)
x = self.dropout(x)
for i in range(self.block_num):
x = self.layers[i](x)
x = self.fc_2(x)
return x
class Model_MAE(nn.Module):
def __init__(self, args):
super().__init__()
layers, channel, d_hid, length = args.layers, args.channel, args.d_hid, args.frames
stride_num = args.stride_num
self.spatial_mask_num = args.spatial_mask_num
self.num_joints_in, self.num_joints_out = args.n_joints, args.out_joints
self.length = length
dec_dim_shrink = 2
self.encoder = FCBlock(2*self.num_joints_in, channel, 2*channel, 1)
self.Transformer = Transformer(layers, channel, d_hid, length=length)
self.Transformer_dec = Transformer_dec(layers-1, channel//dec_dim_shrink, d_hid//dec_dim_shrink, length=length)
self.encoder_to_decoder = nn.Linear(channel, channel//dec_dim_shrink, bias=False)
self.encoder_LN = LayerNorm(channel)
self.fcn_dec = nn.Sequential(
nn.BatchNorm1d(channel//dec_dim_shrink, momentum=0.1),
nn.Conv1d(channel//dec_dim_shrink, 2*self.num_joints_out, kernel_size=1)
)
# self.fcn_1 = nn.Sequential(
# nn.BatchNorm1d(channel, momentum=0.1),
# nn.Conv1d(channel, 3*self.num_joints_out, kernel_size=1)
# )
self.dec_pos_embedding = nn.Parameter(torch.randn(1, length, channel//dec_dim_shrink))
self.mask_token = nn.Parameter(torch.randn(1, 1, channel//dec_dim_shrink))
self.spatial_mask_token = nn.Parameter(torch.randn(1, 1, 2))
def forward(self, x_in, mask, spatial_mask):
x_in = x_in[:, :, :, :, 0].permute(0, 2, 3, 1).contiguous()
b,f,_,_ = x_in.shape
# spatial mask out
x = x_in.clone()
x[:,spatial_mask] = self.spatial_mask_token.expand(b,self.spatial_mask_num*f,2)
x = x.view(b, f, -1)
x = x.permute(0, 2, 1).contiguous()
x = self.encoder(x)
x = x.permute(0, 2, 1).contiguous()
feas = self.Transformer(x, mask_MAE=mask)
feas = self.encoder_LN(feas)
feas = self.encoder_to_decoder(feas)
B, N, C = feas.shape
# we don't unshuffle the correct visible token order,
# but shuffle the pos embedding accorddingly.
expand_pos_embed = self.dec_pos_embedding.expand(B, -1, -1).clone()
pos_emd_vis = expand_pos_embed[:, ~mask].reshape(B, -1, C)
pos_emd_mask = expand_pos_embed[:, mask].reshape(B, -1, C)
x_full = torch.cat([feas + pos_emd_vis, self.mask_token + pos_emd_mask], dim=1)
x_out = self.Transformer_dec(x_full, pos_emd_mask.shape[1])
x_out = x_out.permute(0, 2, 1).contiguous()
x_out = self.fcn_dec(x_out)
x_out = x_out.view(b, self.num_joints_out, 2, -1)
x_out = x_out.permute(0, 2, 3, 1).contiguous().unsqueeze(dim=-1)
return x_out