File size: 5,518 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import torch.nn as nn
from model.block.vanilla_transformer_encoder_pretrain import Transformer, Transformer_dec
from model.block.strided_transformer_encoder import Transformer as Transformer_reduce
import numpy as np

class LayerNorm(nn.Module):
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

class Linear(nn.Module):
    def __init__(self, linear_size, p_dropout=0.25):
        super(Linear, self).__init__()
        self.l_size = linear_size

        self.relu = nn.LeakyReLU(0.2, inplace=True)
        self.dropout = nn.Dropout(p_dropout)

        #self.w1 = nn.Linear(self.l_size, self.l_size)
        self.w1 = nn.Conv1d(self.l_size, self.l_size, kernel_size=1)
        self.batch_norm1 = nn.BatchNorm1d(self.l_size)

        #self.w2 = nn.Linear(self.l_size, self.l_size)
        self.w2 = nn.Conv1d(self.l_size, self.l_size, kernel_size=1)
        self.batch_norm2 = nn.BatchNorm1d(self.l_size)

    def forward(self, x):
        y = self.w1(x)
        y = self.batch_norm1(y)
        y = self.relu(y)
        y = self.dropout(y)

        y = self.w2(y)
        y = self.batch_norm2(y)
        y = self.relu(y)
        y = self.dropout(y)

        out = x + y

        return out

class FCBlock(nn.Module):

    def __init__(self, channel_in, channel_out, linear_size, block_num):
        super(FCBlock, self).__init__()

        self.linear_size = linear_size
        self.block_num = block_num
        self.layers = []
        self.channel_in = channel_in
        self.stage_num = 3
        self.p_dropout = 0.1
        #self.fc_1 = nn.Linear(self.channel_in, self.linear_size)
        self.fc_1 = nn.Conv1d(self.channel_in, self.linear_size, kernel_size=1)
        self.bn_1 = nn.BatchNorm1d(self.linear_size)
        for i in range(block_num):
            self.layers.append(Linear(self.linear_size, self.p_dropout))
        #self.fc_2 = nn.Linear(self.linear_size, channel_out)
        self.fc_2 = nn.Conv1d(self.linear_size, channel_out, kernel_size=1)

        self.layers = nn.ModuleList(self.layers)
        self.relu = nn.LeakyReLU(0.2, inplace=True)
        self.dropout = nn.Dropout(self.p_dropout)

    def forward(self, x):

        x = self.fc_1(x)
        x = self.bn_1(x)
        x = self.relu(x)
        x = self.dropout(x)
        for i in range(self.block_num):
            x = self.layers[i](x)
        x = self.fc_2(x)

        return x

class Model_MAE(nn.Module):
    def __init__(self, args):
        super().__init__()

        layers, channel, d_hid, length  = args.layers, args.channel, args.d_hid, args.frames
        stride_num = args.stride_num
        self.spatial_mask_num = args.spatial_mask_num
        self.num_joints_in, self.num_joints_out = args.n_joints, args.out_joints

        self.length = length
        dec_dim_shrink = 2

        self.encoder = FCBlock(2*self.num_joints_in, channel, 2*channel, 1)

        self.Transformer = Transformer(layers, channel, d_hid, length=length)
        self.Transformer_dec = Transformer_dec(layers-1, channel//dec_dim_shrink, d_hid//dec_dim_shrink, length=length)

        self.encoder_to_decoder = nn.Linear(channel, channel//dec_dim_shrink, bias=False)
        self.encoder_LN = LayerNorm(channel)
        
        self.fcn_dec = nn.Sequential(
            nn.BatchNorm1d(channel//dec_dim_shrink, momentum=0.1),
            nn.Conv1d(channel//dec_dim_shrink, 2*self.num_joints_out, kernel_size=1)
        )

        # self.fcn_1 = nn.Sequential(
        #     nn.BatchNorm1d(channel, momentum=0.1),
        #     nn.Conv1d(channel, 3*self.num_joints_out, kernel_size=1)
        # )

        self.dec_pos_embedding = nn.Parameter(torch.randn(1, length, channel//dec_dim_shrink))
        self.mask_token = nn.Parameter(torch.randn(1, 1, channel//dec_dim_shrink))

        self.spatial_mask_token = nn.Parameter(torch.randn(1, 1, 2))

    def forward(self, x_in, mask, spatial_mask):
        x_in = x_in[:, :, :, :, 0].permute(0, 2, 3, 1).contiguous()
        b,f,_,_ = x_in.shape

        # spatial mask out
        x = x_in.clone()

        x[:,spatial_mask] = self.spatial_mask_token.expand(b,self.spatial_mask_num*f,2)


        x = x.view(b, f, -1)

        x = x.permute(0, 2, 1).contiguous()

        x = self.encoder(x)

        x = x.permute(0, 2, 1).contiguous()
        feas = self.Transformer(x, mask_MAE=mask)

        feas = self.encoder_LN(feas)
        feas = self.encoder_to_decoder(feas)

        B, N, C = feas.shape

        # we don't unshuffle the correct visible token order,
        # but shuffle the pos embedding accorddingly.
        expand_pos_embed = self.dec_pos_embedding.expand(B, -1, -1).clone()
        pos_emd_vis = expand_pos_embed[:, ~mask].reshape(B, -1, C)
        pos_emd_mask = expand_pos_embed[:, mask].reshape(B, -1, C)
        x_full = torch.cat([feas + pos_emd_vis, self.mask_token + pos_emd_mask], dim=1)

        x_out = self.Transformer_dec(x_full, pos_emd_mask.shape[1])

        x_out = x_out.permute(0, 2, 1).contiguous()
        x_out = self.fcn_dec(x_out)

        x_out = x_out.view(b, self.num_joints_out, 2, -1)
        x_out = x_out.permute(0, 2, 3, 1).contiguous().unsqueeze(dim=-1)
        
        return x_out