File size: 2,152 Bytes
1baa2a7
d0f3977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d101153
d0f3977
 
 
 
 
 
d8cb255
 
 
 
 
 
 
d0f3977
 
 
d101153
d0f3977
 
 
 
 
d8cb255
 
 
03542e5
510e759
d0f3977
510e759
d101153
 
af494ea
510e759
d0f3977
1baa2a7
 
d0f3977
d8cb255
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load your hosted model and tokenizer from Hugging Face.
model_name = "Samurai719214/gptneo-mythology-storyteller"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Use GPU if available.
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

def generate_full_story(excerpt: str) -> str:
    """
    Given an incomplete story excerpt (without header details), this function calls the model 
    to generate the complete story that includes Parv, Key Event, Section and the story continuation.
    """
    # Tokenize the user-provided excerpt.
    encoded_input = tokenizer(excerpt, return_tensors = "pt")
    # Move tensors to the appropriate device.
    encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
    
    # Generate tokens. Here, we set parameters to control length and creativity.
    output = model.generate(
        encoded_input["input_ids"],
        attention_mask = encoded_input["attention_mask"],
        max_new_tokens = 200,         # Generate 200 new tokens on top of the input.
        do_sample = True,
        temperature = 0.8,
        top_p = 0.95,
        no_repeat_ngram_size = 2,
        return_dict_in_generate = True
    )
    
    # Decode the generated sequence.
    generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens = True)
    
    return generated_text

# Build the Gradio interface.
interface = gr.Interface(
    fn = generate_full_story,
    inputs = gr.Textbox(
        lines = 5,
        label = "Incomplete story excerpt",
        placeholder = "Enter an excerpt from the Mahabharata here..."
    ),
    outputs = gr.Textbox(label = "Chapter summary"),
    title = "🏺 Mythology Storyteller",
    description = (
        "Enter a phrase from a chapter of your choice (if possible please enter the Parv, Key Event, & Section for an accurate answer). "
        "The model will generate the summary of the respective chapter."
    )
)

# Launch the Gradio app.
interface.launch(share = True)