Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,59 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
# Load your hosted model and tokenizer from Hugging Face.
|
| 6 |
+
model_name = "Samurai719214/gptneo-mythology-storyteller"
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Use GPU if available.
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
model.to(device)
|
| 13 |
+
|
| 14 |
+
def generate_full_story(excerpt: str) -> str:
|
| 15 |
+
"""
|
| 16 |
+
Given an incomplete story excerpt (without header details), this function calls the model
|
| 17 |
+
to generate the complete story that includes Parv, Key Event, Section and the story continuation.
|
| 18 |
+
"""
|
| 19 |
+
# Tokenize the user-provided excerpt.
|
| 20 |
+
encoded_input = tokenizer(excerpt, return_tensors="pt")
|
| 21 |
+
# Move tensors to the appropriate device.
|
| 22 |
+
encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
|
| 23 |
+
|
| 24 |
+
# Generate tokens. Here, we set parameters to control length and creativity.
|
| 25 |
+
output = model.generate(
|
| 26 |
+
encoded_input["input_ids"],
|
| 27 |
+
attention_mask=encoded_input["attention_mask"],
|
| 28 |
+
max_new_tokens=200, # Generate 200 new tokens on top of the input.
|
| 29 |
+
do_sample=True,
|
| 30 |
+
temperature=0.8,
|
| 31 |
+
top_p=0.95,
|
| 32 |
+
no_repeat_ngram_size=2,
|
| 33 |
+
return_dict_in_generate=True
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Decode the generated sequence.
|
| 37 |
+
generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
|
| 38 |
+
|
| 39 |
+
return generated_text
|
| 40 |
+
|
| 41 |
+
# Build the Gradio interface.
|
| 42 |
+
interface = gr.Interface(
|
| 43 |
+
fn=generate_full_story,
|
| 44 |
+
inputs=gr.Textbox(
|
| 45 |
+
lines=5,
|
| 46 |
+
label="Incomplete Story Excerpt",
|
| 47 |
+
placeholder="Enter your incomplete story excerpt here..."
|
| 48 |
+
),
|
| 49 |
+
outputs=gr.Textbox(label="Complete Story with Details"),
|
| 50 |
+
title="Mythology Storyteller",
|
| 51 |
+
description=(
|
| 52 |
+
"Enter an incomplete story excerpt. "
|
| 53 |
+
"The model will generate a complete output that includes the chapter (Parv), key event, section, "
|
| 54 |
+
"and the full story continuation."
|
| 55 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
)
|
| 57 |
|
| 58 |
+
# Launch the Gradio app.
|
| 59 |
+
interface.launch(share=True)
|
|
|