Samurai719214 commited on
Commit
d0f3977
·
verified ·
1 Parent(s): 829c1f7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -61
app.py CHANGED
@@ -1,64 +1,59 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+
5
+ # Load your hosted model and tokenizer from Hugging Face.
6
+ model_name = "Samurai719214/gptneo-mythology-storyteller"
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+
10
+ # Use GPU if available.
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ model.to(device)
13
+
14
+ def generate_full_story(excerpt: str) -> str:
15
+ """
16
+ Given an incomplete story excerpt (without header details), this function calls the model
17
+ to generate the complete story that includes Parv, Key Event, Section and the story continuation.
18
+ """
19
+ # Tokenize the user-provided excerpt.
20
+ encoded_input = tokenizer(excerpt, return_tensors="pt")
21
+ # Move tensors to the appropriate device.
22
+ encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
23
+
24
+ # Generate tokens. Here, we set parameters to control length and creativity.
25
+ output = model.generate(
26
+ encoded_input["input_ids"],
27
+ attention_mask=encoded_input["attention_mask"],
28
+ max_new_tokens=200, # Generate 200 new tokens on top of the input.
29
+ do_sample=True,
30
+ temperature=0.8,
31
+ top_p=0.95,
32
+ no_repeat_ngram_size=2,
33
+ return_dict_in_generate=True
34
+ )
35
+
36
+ # Decode the generated sequence.
37
+ generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
38
+
39
+ return generated_text
40
+
41
+ # Build the Gradio interface.
42
+ interface = gr.Interface(
43
+ fn=generate_full_story,
44
+ inputs=gr.Textbox(
45
+ lines=5,
46
+ label="Incomplete Story Excerpt",
47
+ placeholder="Enter your incomplete story excerpt here..."
48
+ ),
49
+ outputs=gr.Textbox(label="Complete Story with Details"),
50
+ title="Mythology Storyteller",
51
+ description=(
52
+ "Enter an incomplete story excerpt. "
53
+ "The model will generate a complete output that includes the chapter (Parv), key event, section, "
54
+ "and the full story continuation."
55
+ )
 
 
 
 
56
  )
57
 
58
+ # Launch the Gradio app.
59
+ interface.launch(share=True)