Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,59 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Load your hosted model and tokenizer from Hugging Face.
|
6 |
+
model_name = "Samurai719214/gptneo-mythology-storyteller"
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Use GPU if available.
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
model.to(device)
|
13 |
+
|
14 |
+
def generate_full_story(excerpt: str) -> str:
|
15 |
+
"""
|
16 |
+
Given an incomplete story excerpt (without header details), this function calls the model
|
17 |
+
to generate the complete story that includes Parv, Key Event, Section and the story continuation.
|
18 |
+
"""
|
19 |
+
# Tokenize the user-provided excerpt.
|
20 |
+
encoded_input = tokenizer(excerpt, return_tensors="pt")
|
21 |
+
# Move tensors to the appropriate device.
|
22 |
+
encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
|
23 |
+
|
24 |
+
# Generate tokens. Here, we set parameters to control length and creativity.
|
25 |
+
output = model.generate(
|
26 |
+
encoded_input["input_ids"],
|
27 |
+
attention_mask=encoded_input["attention_mask"],
|
28 |
+
max_new_tokens=200, # Generate 200 new tokens on top of the input.
|
29 |
+
do_sample=True,
|
30 |
+
temperature=0.8,
|
31 |
+
top_p=0.95,
|
32 |
+
no_repeat_ngram_size=2,
|
33 |
+
return_dict_in_generate=True
|
34 |
+
)
|
35 |
+
|
36 |
+
# Decode the generated sequence.
|
37 |
+
generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
|
38 |
+
|
39 |
+
return generated_text
|
40 |
+
|
41 |
+
# Build the Gradio interface.
|
42 |
+
interface = gr.Interface(
|
43 |
+
fn=generate_full_story,
|
44 |
+
inputs=gr.Textbox(
|
45 |
+
lines=5,
|
46 |
+
label="Incomplete Story Excerpt",
|
47 |
+
placeholder="Enter your incomplete story excerpt here..."
|
48 |
+
),
|
49 |
+
outputs=gr.Textbox(label="Complete Story with Details"),
|
50 |
+
title="Mythology Storyteller",
|
51 |
+
description=(
|
52 |
+
"Enter an incomplete story excerpt. "
|
53 |
+
"The model will generate a complete output that includes the chapter (Parv), key event, section, "
|
54 |
+
"and the full story continuation."
|
55 |
+
)
|
|
|
|
|
|
|
|
|
56 |
)
|
57 |
|
58 |
+
# Launch the Gradio app.
|
59 |
+
interface.launch(share=True)
|
|