ai_assistant / helper_functions.py
SamuelM0422's picture
Upload 2 files
4ce999d verified
raw
history blame
1.38 kB
from transformers import pipeline, VitsModel, AutoTokenizer
import torch
import os
from groq import Groq
# Transcriber model
transcriber = pipeline("automatic-speech-recognition", model="SamuelM0422/whisper-small-pt")
# Synthesise model
model = VitsModel.from_pretrained("facebook/mms-tts-por")
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-por")
# LLM query function
def query(text, groq_api_key):
client = Groq(
api_key=groq_api_key,
)
chat_completion = client.chat.completions.create(
messages=[
{
'role': 'system',
'content': 'Answer the following question concisely and objectively. If there are numbers in the response, WRITE THEM IN WORDS.',
},
{
"role": "user",
"content": text,
}
],
model="llama-3.1-8b-instant",
)
return chat_completion.choices[0].message.content
# Synthesise function
def synthesise(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = model(**inputs).waveform
return output.cpu()
# Piecing all them together
def ai_assistant(filepath, groq_key):
transcription = transcriber(filepath)
response = query(transcription['text'], groq_key)
audio_response = synthesise(response)
return (16000, audio_response.squeeze().cpu().numpy()), response