Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +16 -0
- helper_functions.py +49 -0
app.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from helper_functions import ai_assistant
|
| 3 |
+
|
| 4 |
+
title = 'Ai Assistant 🤖'
|
| 5 |
+
description = 'A cascade approach consisting of a text transcription model combined with an llm and a synthesizer to create an ai assistant'
|
| 6 |
+
|
| 7 |
+
demo = gr.Interface(
|
| 8 |
+
fn=ai_assistant,
|
| 9 |
+
inputs=[gr.Audio(label='Command Input', sources=['microphone', 'upload'], type='filepath'), gr.Textbox(label='Groq API Key')],
|
| 10 |
+
outputs=[gr.Audio(label='Output', type='numpy'), gr.Textbox(label="Reponse")],
|
| 11 |
+
flagging_mode='never',
|
| 12 |
+
title=title,
|
| 13 |
+
description=description
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
demo.launch()
|
helper_functions.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline, VitsModel, AutoTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
from groq import Groq
|
| 5 |
+
|
| 6 |
+
# Transcriber model
|
| 7 |
+
transcriber = pipeline("automatic-speech-recognition", model="SamuelM0422/whisper-small-pt")
|
| 8 |
+
|
| 9 |
+
# Synthesise model
|
| 10 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-por")
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-por")
|
| 12 |
+
|
| 13 |
+
# LLM query function
|
| 14 |
+
def query(text, groq_api_key):
|
| 15 |
+
client = Groq(
|
| 16 |
+
api_key=groq_api_key,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
chat_completion = client.chat.completions.create(
|
| 20 |
+
messages=[
|
| 21 |
+
{
|
| 22 |
+
'role': 'system',
|
| 23 |
+
'content': 'Answer the following question concisely and objectively. If there are numbers in the response, WRITE THEM IN WORDS.',
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"role": "user",
|
| 27 |
+
"content": text,
|
| 28 |
+
}
|
| 29 |
+
],
|
| 30 |
+
model="llama-3.1-8b-instant",
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
return chat_completion.choices[0].message.content
|
| 34 |
+
|
| 35 |
+
# Synthesise function
|
| 36 |
+
def synthesise(text):
|
| 37 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
output = model(**inputs).waveform
|
| 40 |
+
|
| 41 |
+
return output.cpu()
|
| 42 |
+
|
| 43 |
+
# Piecing all them together
|
| 44 |
+
def ai_assistant(filepath, groq_key):
|
| 45 |
+
transcription = transcriber(filepath)
|
| 46 |
+
response = query(transcription['text'], groq_key)
|
| 47 |
+
audio_response = synthesise(response)
|
| 48 |
+
|
| 49 |
+
return (16000, audio_response.squeeze().cpu().numpy()), response
|