File size: 11,091 Bytes
b9d9b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os
import cv2
from transformers import DetrFeatureExtractor
from transformers import DetrForObjectDetection
import torch
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, Wedge, Rectangle
import streamlit as st
from PIL import Image
import math


colors = ["red", "blue", "green", "yellow", "orange", "violet"]


def table_detector(image, THRESHOLD_PROBA):
  '''
  Table detection using DEtect-object TRansformer pre-trained on 1 million tables
  
  '''

  feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
  encoding = feature_extractor(image, return_tensors="pt")
  # encoding.keys()
  model = DetrForObjectDetection.from_pretrained("SalML/DETR-table-detection")
  # SalML\DETR-table-detection
  with torch.no_grad():
    outputs = model(**encoding)

  # keep only predictions of queries with 0.9+ confidence (excluding no-object class)
  probas = outputs.logits.softmax(-1)[0, :, :-1]
  keep = probas.max(-1).values > THRESHOLD_PROBA

  # rescale bounding boxes
  target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
  postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
  bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]

  return (model, image, probas[keep], bboxes_scaled)


def table_struct_recog(image, THRESHOLD_PROBA):
  '''
  Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
  '''

  feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
  encoding = feature_extractor(image, return_tensors="pt")

  model = DetrForObjectDetection.from_pretrained("SalML/DETR-table-structure-recognition")
  with torch.no_grad():
    outputs = model(**encoding)

  # keep only predictions of queries with 0.9+ confidence (excluding no-object class)
  probas = outputs.logits.softmax(-1)[0, :, :-1]
  keep = probas.max(-1).values > THRESHOLD_PROBA

  # rescale bounding boxes
  target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
  postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
  bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]

  return (model, image, probas[keep], bboxes_scaled)

def add_margin(pil_img, top=20, right=20, bottom=20, left=20, color=(255,255,255)):
  '''
  Image padding as part of TSR pre-processing to prevent missing table edges
  '''
  width, height = pil_img.size
  new_width = width + right + left
  new_height = height + top + bottom
  result = Image.new(pil_img.mode, (new_width, new_height), color)
  result.paste(pil_img, (left, top))
  return result

def plot_results_detection(c1, model, pil_img, prob, boxes, show_only_cropped=False):
  '''
  Plots the full pillow pdf-page image and adds a rectangle patch for table detection
  '''

  plt.figure(figsize=(32,20))
  plt.imshow(pil_img)
  ax = plt.gca()

  for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):

      cl = p.argmax()
      xmin, ymin, xmax, ymax = xmin-3, ymin-3, xmax+3, ymax+3  
      ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[cl.item()], linewidth=3))
      text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}'
      ax.text(xmin, ymin, text, fontsize=15,bbox=dict(facecolor='yellow', alpha=0.5))
  plt.axis('off')
  plt.show()
  c1.pyplot()


def plot_table_detection(c2, model, pil_img, prob, boxes):
  '''
  Plots only the cropped table(s) from the table detection 
  '''

  plt.figure(figsize=(32,20))
  ax = plt.gca()
  cropped_img_list = []

  for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):

      xmin, ymin, xmax, ymax = xmin-3, ymin-3, xmax+3, ymax+3  
      cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
      cropped_img_list.append(cropped_img)

  for cropped_img in cropped_img_list:
    plt.imshow(cropped_img)

    plt.axis('off')
    plt.show()
    c2.pyplot()
  return cropped_img_list


def plot_structure(c3, model, pil_img, prob, boxes, class_to_show=0):
  '''
  To plot table pillow image and the TSR bounding boxes on the table
  '''
  plt.figure(figsize=(32,20))
  plt.imshow(pil_img)
  ax = plt.gca()
  rows = {}
  cols = {}
  header = {}
  row_header = {}
  idx = 0

  for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):

      xmin, ymin, xmax, ymax = xmin-3, ymin-3, xmax+3, ymax+3  
      cl = p.argmax()
      class_text = model.config.id2label[cl.item()]
      text = f'{class_text}: {p[cl]:0.2f}'
      # st.write(class_text)
      if class_text != 'table':
        
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[cl.item()], linewidth=3))
        ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5))

        # if class_text == 'table column header':
        #   header['header'] = (xmin, ymin, xmax, ymax)
        if class_text == 'table row':
          rows['table row '+str(idx)] = (xmin, ymin, xmax, ymax)
        if class_text == 'table column':
          cols['table column '+str(idx)] = (xmin, ymin, xmax, ymax)
        # if class_text == 'table projected row header':
        #   row_header['header table row'+str(idx)] = (xmin, ymin, xmax, ymax)

      idx += 1

  plt.show()
  c3.pyplot()
  # return header, row_header, rows, cols
  return rows, cols



def sort_table_features(header, row_header, rows, cols):
  # Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
  y_header = header['header'][3] - 10
  rows_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(rows.items(), key=lambda tup: tup[1][1]) if ymin > y_header}
  cols_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])}

  row_header_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(row_header.items(), key=lambda tup: tup[1][1])}

  new_row = {}
  idx = 0

  for k1, v1 in rows_.items():
    save_row = True
    row_xmin, row_ymin, row_xmax, row_ymax = v1
    for k2, v2 in row_header_.items():
      header_row_xmin, header_row_ymin, header_row_xmax, header_row_ymax = v2
      # table row and header table row are within 2 pixel range, skip saving the row
      if math.isclose(row_ymin, header_row_ymin, abs_tol=2):
        save_row = False
    if save_row:
      new_row['table row.'+str(idx)] = (row_xmin, row_ymin, row_xmax, row_ymax)
      idx += 1

  new_row_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(new_row.items(), key=lambda tup: tup[1][1])}

  return row_header_, new_row_, cols_


def sort_table_featuresv2(rows, cols):
  # Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
  rows_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(rows.items(), key=lambda tup: tup[1][1])}
  cols_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])}

  return rows_, cols_

def individual_table_features(pil_img, header, row_header, rows, cols):

  for k, v in header.items():
    xmin, ymin, xmax, ymax = v
    cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
    header[k] = xmin, ymin, xmax, ymax, cropped_img

  for k, v in row_header.items():
    xmin, ymin, xmax, ymax = v
    cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
    row_header[k] = xmin, ymin, xmax, ymax, cropped_img

  for k, v in rows.items():
    xmin, ymin, xmax, ymax = v
    cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
    rows[k] = xmin, ymin, xmax, ymax, cropped_img


  for k, v in cols.items():
    xmin, ymin, xmax, ymax = v
    cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
    cols[k] = xmin, ymin, xmax, ymax, cropped_img

  return header, row_header, rows, cols

def individual_table_featuresv2(pil_img, rows, cols):


  for k, v in rows.items():
    xmin, ymin, xmax, ymax = v
    cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
    rows[k] = xmin, ymin, xmax, ymax, cropped_img


  for k, v in cols.items():
    xmin, ymin, xmax, ymax = v
    cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
    cols[k] = xmin, ymin, xmax, ymax, cropped_img

  return rows, cols

def plot_table_features(c2, header, row_header, rows, cols):

  for k, v in header.items():
    _, _, _, _, pil_img = v

  for k, v in row_header.items():
    _, _, _, _, pil_img = v

  for k, v in rows.items():
    _, _, _, _, pil_img = v

  for k, v in cols.items():
    _, _, _, _, pil_img = v


def master_row_set(header, row_header, rows, cols):
  master_row = {**header, **row_header, **rows}
  master_row_ = {table_feature : (xmin, ymin, xmax, ymax, img) for table_feature, (xmin, ymin, xmax, ymax, img) in sorted(master_row.items(), key=lambda tup: tup[1][1])}

  return master_row_




def object_to_cells(master_row, cols):
  '''
  Iterates to every row, be it header/simple row/header table row, cuts rows into cells and saves images in dictionary where length of dictionary = total rows
  '''
  cells_img = {}
  header_idx = 0
  row_idx = 0
  for k_row, v_row in master_row.items():

    if k_row[:16] == 'header table row':

      _, _, _, _, row_header_img = v_row
      cells_img[k_row+'.'+str(row_idx)] = row_header_img
      row_idx += 1

    elif k_row == 'header':

      _, ymin, _, ymax, header_img = v_row

      xa, ya, xb, yb = 0, 0, 0, ymax-ymin
      for k_col, v_col in cols.items():
        xmin_col, _, xmax_col, _, col_img = v_col
        xa = xmin_col-19
        xb = xmax_col-20

        header_img_cropped = header_img.crop((xa, ya, xb, yb))
        cells_img[k_row+'.'+str(header_idx)] = header_img_cropped
        header_idx += 1


    elif k_row[:9] == 'table row':

      xmin, ymin, xmax, ymax, row_img = v_row
      xa, ya, xb, yb = 0, 0, 0, ymax-ymin
      row_img_list = []
      for k_col, v_col in cols.items():
        xmin_col, _, xmax_col, _, col_img = v_col
        xa = xmin_col-19
        xb = xmax_col-20
        row_img_cropped = row_img.crop((xa, ya, xb, yb))
        row_img_list.append(row_img_cropped)
      cells_img[k_row+'.'+str(row_idx)] = row_img_list
      row_idx += 1
    
  return cells_img


def object_to_cellsv2(master_row, cols):
  '''
  Iterates to every row, be it header/simple row/header table row, cuts rows into cells and saves images in dictionary where length of dictionary = total rows
  '''
  cells_img = {}
  header_idx = 0
  row_idx = 0
  for k_row, v_row in master_row.items():

    xmin, ymin, xmax, ymax, row_img = v_row
    xa, ya, xb, yb = 0, 0, 0, ymax-ymin
    row_img_list = []
    for k_col, v_col in cols.items():
      xmin_col, _, xmax_col, _, col_img = v_col
      xa = xmin_col-19
      xb = xmax_col-20
      row_img_cropped = row_img.crop((xa, ya, xb, yb))
      row_img_list.append(row_img_cropped)
    cells_img[k_row+'.'+str(row_idx)] = row_img_list
    row_idx += 1
    
  return cells_img