Spaces:
Build error
Build error
Upload TDTSR.py
Browse files
TDTSR.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
from transformers import DetrFeatureExtractor
|
4 |
+
from transformers import DetrForObjectDetection
|
5 |
+
import torch
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from matplotlib.patches import Circle, Wedge, Rectangle
|
8 |
+
import streamlit as st
|
9 |
+
from PIL import Image
|
10 |
+
import math
|
11 |
+
|
12 |
+
|
13 |
+
colors = ["red", "blue", "green", "yellow", "orange", "violet"]
|
14 |
+
|
15 |
+
|
16 |
+
def table_detector(image, THRESHOLD_PROBA):
|
17 |
+
'''
|
18 |
+
Table detection using DEtect-object TRansformer pre-trained on 1 million tables
|
19 |
+
|
20 |
+
'''
|
21 |
+
|
22 |
+
feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
|
23 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
24 |
+
# encoding.keys()
|
25 |
+
model = DetrForObjectDetection.from_pretrained("SalML/DETR-table-detection")
|
26 |
+
# SalML\DETR-table-detection
|
27 |
+
with torch.no_grad():
|
28 |
+
outputs = model(**encoding)
|
29 |
+
|
30 |
+
# keep only predictions of queries with 0.9+ confidence (excluding no-object class)
|
31 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
32 |
+
keep = probas.max(-1).values > THRESHOLD_PROBA
|
33 |
+
|
34 |
+
# rescale bounding boxes
|
35 |
+
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
36 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
37 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
38 |
+
|
39 |
+
return (model, image, probas[keep], bboxes_scaled)
|
40 |
+
|
41 |
+
|
42 |
+
def table_struct_recog(image, THRESHOLD_PROBA):
|
43 |
+
'''
|
44 |
+
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
|
45 |
+
'''
|
46 |
+
|
47 |
+
feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
|
48 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
49 |
+
|
50 |
+
model = DetrForObjectDetection.from_pretrained("SalML/DETR-table-structure-recognition")
|
51 |
+
with torch.no_grad():
|
52 |
+
outputs = model(**encoding)
|
53 |
+
|
54 |
+
# keep only predictions of queries with 0.9+ confidence (excluding no-object class)
|
55 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
56 |
+
keep = probas.max(-1).values > THRESHOLD_PROBA
|
57 |
+
|
58 |
+
# rescale bounding boxes
|
59 |
+
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
60 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
61 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
62 |
+
|
63 |
+
return (model, image, probas[keep], bboxes_scaled)
|
64 |
+
|
65 |
+
def add_margin(pil_img, top=20, right=20, bottom=20, left=20, color=(255,255,255)):
|
66 |
+
'''
|
67 |
+
Image padding as part of TSR pre-processing to prevent missing table edges
|
68 |
+
'''
|
69 |
+
width, height = pil_img.size
|
70 |
+
new_width = width + right + left
|
71 |
+
new_height = height + top + bottom
|
72 |
+
result = Image.new(pil_img.mode, (new_width, new_height), color)
|
73 |
+
result.paste(pil_img, (left, top))
|
74 |
+
return result
|
75 |
+
|
76 |
+
def plot_results_detection(c1, model, pil_img, prob, boxes, show_only_cropped=False):
|
77 |
+
'''
|
78 |
+
Plots the full pillow pdf-page image and adds a rectangle patch for table detection
|
79 |
+
'''
|
80 |
+
|
81 |
+
plt.figure(figsize=(32,20))
|
82 |
+
plt.imshow(pil_img)
|
83 |
+
ax = plt.gca()
|
84 |
+
|
85 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
86 |
+
|
87 |
+
cl = p.argmax()
|
88 |
+
xmin, ymin, xmax, ymax = xmin-3, ymin-3, xmax+3, ymax+3
|
89 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[cl.item()], linewidth=3))
|
90 |
+
text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}'
|
91 |
+
ax.text(xmin, ymin, text, fontsize=15,bbox=dict(facecolor='yellow', alpha=0.5))
|
92 |
+
plt.axis('off')
|
93 |
+
plt.show()
|
94 |
+
c1.pyplot()
|
95 |
+
|
96 |
+
|
97 |
+
def plot_table_detection(c2, model, pil_img, prob, boxes):
|
98 |
+
'''
|
99 |
+
Plots only the cropped table(s) from the table detection
|
100 |
+
'''
|
101 |
+
|
102 |
+
plt.figure(figsize=(32,20))
|
103 |
+
ax = plt.gca()
|
104 |
+
cropped_img_list = []
|
105 |
+
|
106 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
107 |
+
|
108 |
+
xmin, ymin, xmax, ymax = xmin-3, ymin-3, xmax+3, ymax+3
|
109 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
110 |
+
cropped_img_list.append(cropped_img)
|
111 |
+
|
112 |
+
for cropped_img in cropped_img_list:
|
113 |
+
plt.imshow(cropped_img)
|
114 |
+
|
115 |
+
plt.axis('off')
|
116 |
+
plt.show()
|
117 |
+
c2.pyplot()
|
118 |
+
return cropped_img_list
|
119 |
+
|
120 |
+
|
121 |
+
def plot_structure(c3, model, pil_img, prob, boxes, class_to_show=0):
|
122 |
+
'''
|
123 |
+
To plot table pillow image and the TSR bounding boxes on the table
|
124 |
+
'''
|
125 |
+
plt.figure(figsize=(32,20))
|
126 |
+
plt.imshow(pil_img)
|
127 |
+
ax = plt.gca()
|
128 |
+
rows = {}
|
129 |
+
cols = {}
|
130 |
+
header = {}
|
131 |
+
row_header = {}
|
132 |
+
idx = 0
|
133 |
+
|
134 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
135 |
+
|
136 |
+
xmin, ymin, xmax, ymax = xmin-3, ymin-3, xmax+3, ymax+3
|
137 |
+
cl = p.argmax()
|
138 |
+
class_text = model.config.id2label[cl.item()]
|
139 |
+
text = f'{class_text}: {p[cl]:0.2f}'
|
140 |
+
# st.write(class_text)
|
141 |
+
if class_text != 'table':
|
142 |
+
|
143 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[cl.item()], linewidth=3))
|
144 |
+
ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5))
|
145 |
+
|
146 |
+
# if class_text == 'table column header':
|
147 |
+
# header['header'] = (xmin, ymin, xmax, ymax)
|
148 |
+
if class_text == 'table row':
|
149 |
+
rows['table row '+str(idx)] = (xmin, ymin, xmax, ymax)
|
150 |
+
if class_text == 'table column':
|
151 |
+
cols['table column '+str(idx)] = (xmin, ymin, xmax, ymax)
|
152 |
+
# if class_text == 'table projected row header':
|
153 |
+
# row_header['header table row'+str(idx)] = (xmin, ymin, xmax, ymax)
|
154 |
+
|
155 |
+
idx += 1
|
156 |
+
|
157 |
+
plt.show()
|
158 |
+
c3.pyplot()
|
159 |
+
# return header, row_header, rows, cols
|
160 |
+
return rows, cols
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
def sort_table_features(header, row_header, rows, cols):
|
165 |
+
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
|
166 |
+
y_header = header['header'][3] - 10
|
167 |
+
rows_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(rows.items(), key=lambda tup: tup[1][1]) if ymin > y_header}
|
168 |
+
cols_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])}
|
169 |
+
|
170 |
+
row_header_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(row_header.items(), key=lambda tup: tup[1][1])}
|
171 |
+
|
172 |
+
new_row = {}
|
173 |
+
idx = 0
|
174 |
+
|
175 |
+
for k1, v1 in rows_.items():
|
176 |
+
save_row = True
|
177 |
+
row_xmin, row_ymin, row_xmax, row_ymax = v1
|
178 |
+
for k2, v2 in row_header_.items():
|
179 |
+
header_row_xmin, header_row_ymin, header_row_xmax, header_row_ymax = v2
|
180 |
+
# table row and header table row are within 2 pixel range, skip saving the row
|
181 |
+
if math.isclose(row_ymin, header_row_ymin, abs_tol=2):
|
182 |
+
save_row = False
|
183 |
+
if save_row:
|
184 |
+
new_row['table row.'+str(idx)] = (row_xmin, row_ymin, row_xmax, row_ymax)
|
185 |
+
idx += 1
|
186 |
+
|
187 |
+
new_row_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(new_row.items(), key=lambda tup: tup[1][1])}
|
188 |
+
|
189 |
+
return row_header_, new_row_, cols_
|
190 |
+
|
191 |
+
|
192 |
+
def sort_table_featuresv2(rows, cols):
|
193 |
+
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
|
194 |
+
rows_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(rows.items(), key=lambda tup: tup[1][1])}
|
195 |
+
cols_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])}
|
196 |
+
|
197 |
+
return rows_, cols_
|
198 |
+
|
199 |
+
def individual_table_features(pil_img, header, row_header, rows, cols):
|
200 |
+
|
201 |
+
for k, v in header.items():
|
202 |
+
xmin, ymin, xmax, ymax = v
|
203 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
204 |
+
header[k] = xmin, ymin, xmax, ymax, cropped_img
|
205 |
+
|
206 |
+
for k, v in row_header.items():
|
207 |
+
xmin, ymin, xmax, ymax = v
|
208 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
209 |
+
row_header[k] = xmin, ymin, xmax, ymax, cropped_img
|
210 |
+
|
211 |
+
for k, v in rows.items():
|
212 |
+
xmin, ymin, xmax, ymax = v
|
213 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
214 |
+
rows[k] = xmin, ymin, xmax, ymax, cropped_img
|
215 |
+
|
216 |
+
|
217 |
+
for k, v in cols.items():
|
218 |
+
xmin, ymin, xmax, ymax = v
|
219 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
220 |
+
cols[k] = xmin, ymin, xmax, ymax, cropped_img
|
221 |
+
|
222 |
+
return header, row_header, rows, cols
|
223 |
+
|
224 |
+
def individual_table_featuresv2(pil_img, rows, cols):
|
225 |
+
|
226 |
+
|
227 |
+
for k, v in rows.items():
|
228 |
+
xmin, ymin, xmax, ymax = v
|
229 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
230 |
+
rows[k] = xmin, ymin, xmax, ymax, cropped_img
|
231 |
+
|
232 |
+
|
233 |
+
for k, v in cols.items():
|
234 |
+
xmin, ymin, xmax, ymax = v
|
235 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
236 |
+
cols[k] = xmin, ymin, xmax, ymax, cropped_img
|
237 |
+
|
238 |
+
return rows, cols
|
239 |
+
|
240 |
+
def plot_table_features(c2, header, row_header, rows, cols):
|
241 |
+
|
242 |
+
for k, v in header.items():
|
243 |
+
_, _, _, _, pil_img = v
|
244 |
+
|
245 |
+
for k, v in row_header.items():
|
246 |
+
_, _, _, _, pil_img = v
|
247 |
+
|
248 |
+
for k, v in rows.items():
|
249 |
+
_, _, _, _, pil_img = v
|
250 |
+
|
251 |
+
for k, v in cols.items():
|
252 |
+
_, _, _, _, pil_img = v
|
253 |
+
|
254 |
+
|
255 |
+
def master_row_set(header, row_header, rows, cols):
|
256 |
+
master_row = {**header, **row_header, **rows}
|
257 |
+
master_row_ = {table_feature : (xmin, ymin, xmax, ymax, img) for table_feature, (xmin, ymin, xmax, ymax, img) in sorted(master_row.items(), key=lambda tup: tup[1][1])}
|
258 |
+
|
259 |
+
return master_row_
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
def object_to_cells(master_row, cols):
|
265 |
+
'''
|
266 |
+
Iterates to every row, be it header/simple row/header table row, cuts rows into cells and saves images in dictionary where length of dictionary = total rows
|
267 |
+
'''
|
268 |
+
cells_img = {}
|
269 |
+
header_idx = 0
|
270 |
+
row_idx = 0
|
271 |
+
for k_row, v_row in master_row.items():
|
272 |
+
|
273 |
+
if k_row[:16] == 'header table row':
|
274 |
+
|
275 |
+
_, _, _, _, row_header_img = v_row
|
276 |
+
cells_img[k_row+'.'+str(row_idx)] = row_header_img
|
277 |
+
row_idx += 1
|
278 |
+
|
279 |
+
elif k_row == 'header':
|
280 |
+
|
281 |
+
_, ymin, _, ymax, header_img = v_row
|
282 |
+
|
283 |
+
xa, ya, xb, yb = 0, 0, 0, ymax-ymin
|
284 |
+
for k_col, v_col in cols.items():
|
285 |
+
xmin_col, _, xmax_col, _, col_img = v_col
|
286 |
+
xa = xmin_col-19
|
287 |
+
xb = xmax_col-20
|
288 |
+
|
289 |
+
header_img_cropped = header_img.crop((xa, ya, xb, yb))
|
290 |
+
cells_img[k_row+'.'+str(header_idx)] = header_img_cropped
|
291 |
+
header_idx += 1
|
292 |
+
|
293 |
+
|
294 |
+
elif k_row[:9] == 'table row':
|
295 |
+
|
296 |
+
xmin, ymin, xmax, ymax, row_img = v_row
|
297 |
+
xa, ya, xb, yb = 0, 0, 0, ymax-ymin
|
298 |
+
row_img_list = []
|
299 |
+
for k_col, v_col in cols.items():
|
300 |
+
xmin_col, _, xmax_col, _, col_img = v_col
|
301 |
+
xa = xmin_col-19
|
302 |
+
xb = xmax_col-20
|
303 |
+
row_img_cropped = row_img.crop((xa, ya, xb, yb))
|
304 |
+
row_img_list.append(row_img_cropped)
|
305 |
+
cells_img[k_row+'.'+str(row_idx)] = row_img_list
|
306 |
+
row_idx += 1
|
307 |
+
|
308 |
+
return cells_img
|
309 |
+
|
310 |
+
|
311 |
+
def object_to_cellsv2(master_row, cols):
|
312 |
+
'''
|
313 |
+
Iterates to every row, be it header/simple row/header table row, cuts rows into cells and saves images in dictionary where length of dictionary = total rows
|
314 |
+
'''
|
315 |
+
cells_img = {}
|
316 |
+
header_idx = 0
|
317 |
+
row_idx = 0
|
318 |
+
for k_row, v_row in master_row.items():
|
319 |
+
|
320 |
+
xmin, ymin, xmax, ymax, row_img = v_row
|
321 |
+
xa, ya, xb, yb = 0, 0, 0, ymax-ymin
|
322 |
+
row_img_list = []
|
323 |
+
for k_col, v_col in cols.items():
|
324 |
+
xmin_col, _, xmax_col, _, col_img = v_col
|
325 |
+
xa = xmin_col-19
|
326 |
+
xb = xmax_col-20
|
327 |
+
row_img_cropped = row_img.crop((xa, ya, xb, yb))
|
328 |
+
row_img_list.append(row_img_cropped)
|
329 |
+
cells_img[k_row+'.'+str(row_idx)] = row_img_list
|
330 |
+
row_idx += 1
|
331 |
+
|
332 |
+
return cells_img
|