Spaces:
Runtime error
Runtime error
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |
""" | |
Validate a trained YOLOv5 model accuracy on a custom dataset | |
Usage: | |
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640 | |
""" | |
import argparse | |
import json | |
import os | |
import sys | |
from pathlib import Path | |
from threading import Thread | |
import numpy as np | |
import torch | |
from tqdm import tqdm | |
FILE = Path(__file__).absolute() | |
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path | |
from models.experimental import attempt_load | |
from utils.callbacks import Callbacks | |
from utils.datasets import create_dataloader | |
from utils.general import ( | |
box_iou, | |
check_dataset, | |
check_img_size, | |
check_requirements, | |
check_suffix, | |
check_yaml, | |
coco80_to_coco91_class, | |
colorstr, | |
increment_path, | |
non_max_suppression, | |
scale_coords, | |
set_logging, | |
xywh2xyxy, | |
xyxy2xywh, | |
) | |
from utils.metrics import ConfusionMatrix, ap_per_class | |
from utils.plots import output_to_target, plot_images, plot_study_txt | |
from utils.torch_utils import select_device, time_sync | |
def save_one_txt(predn, save_conf, shape, file): | |
# Save one txt result | |
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh | |
for *xyxy, conf, cls in predn.tolist(): | |
xywh = ( | |
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() | |
) # normalized xywh | |
line = ( | |
(cls, *xywh, conf) if save_conf else (cls, *xywh) | |
) # label format | |
with open(file, "a") as f: | |
f.write(("%g " * len(line)).rstrip() % line + "\n") | |
def save_one_json(predn, jdict, path, class_map): | |
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} | |
image_id = int(path.stem) if path.stem.isnumeric() else path.stem | |
box = xyxy2xywh(predn[:, :4]) # xywh | |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
for p, b in zip(predn.tolist(), box.tolist()): | |
jdict.append( | |
{ | |
"image_id": image_id, | |
"category_id": class_map[int(p[5])], | |
"bbox": [round(x, 3) for x in b], | |
"score": round(p[4], 5), | |
} | |
) | |
def process_batch(detections, labels, iouv): | |
""" | |
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. | |
Arguments: | |
detections (Array[N, 6]), x1, y1, x2, y2, conf, class | |
labels (Array[M, 5]), class, x1, y1, x2, y2 | |
Returns: | |
correct (Array[N, 10]), for 10 IoU levels | |
""" | |
correct = torch.zeros( | |
detections.shape[0], | |
iouv.shape[0], | |
dtype=torch.bool, | |
device=iouv.device, | |
) | |
iou = box_iou(labels[:, 1:], detections[:, :4]) | |
x = torch.where( | |
(iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5]) | |
) # IoU above threshold and classes match | |
if x[0].shape[0]: | |
matches = ( | |
torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1) | |
.cpu() | |
.numpy() | |
) # [label, detection, iou] | |
if x[0].shape[0] > 1: | |
matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] | |
# matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] | |
matches = torch.Tensor(matches).to(iouv.device) | |
correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv | |
return correct | |
def run( | |
data, | |
weights=None, # model.pt path(s) | |
batch_size=32, # batch size | |
imgsz=640, # inference size (pixels) | |
conf_thres=0.001, # confidence threshold | |
iou_thres=0.6, # NMS IoU threshold | |
task="val", # train, val, test, speed or study | |
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
single_cls=False, # treat as single-class dataset | |
augment=False, # augmented inference | |
verbose=False, # verbose output | |
save_txt=False, # save results to *.txt | |
save_hybrid=False, # save label+prediction hybrid results to *.txt | |
save_conf=False, # save confidences in --save-txt labels | |
save_json=False, # save a COCO-JSON results file | |
project="runs/val", # save to project/name | |
name="exp", # save to project/name | |
exist_ok=False, # existing project/name ok, do not increment | |
half=True, # use FP16 half-precision inference | |
model=None, | |
dataloader=None, | |
save_dir=Path(""), | |
plots=True, | |
callbacks=Callbacks(), | |
compute_loss=None, | |
): | |
# Initialize/load model and set device | |
training = model is not None | |
if training: # called by train.py | |
device = next(model.parameters()).device # get model device | |
else: # called directly | |
device = select_device(device, batch_size=batch_size) | |
# Directories | |
save_dir = increment_path( | |
Path(project) / name, exist_ok=exist_ok | |
) # increment run | |
(save_dir / "labels" if save_txt else save_dir).mkdir( | |
parents=True, exist_ok=True | |
) # make dir | |
# Load model | |
check_suffix(weights, ".pt") | |
model = attempt_load(weights, map_location=device) # load FP32 model | |
gs = max(int(model.stride.max()), 32) # grid size (max stride) | |
imgsz = check_img_size(imgsz, s=gs) # check image size | |
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 | |
# if device.type != 'cpu' and torch.cuda.device_count() > 1: | |
# model = nn.DataParallel(model) | |
# Data | |
data = check_dataset(data) # check | |
# Half | |
half &= device.type != "cpu" # half precision only supported on CUDA | |
if half: | |
model.half() | |
# Configure | |
model.eval() | |
is_coco = isinstance(data.get("val"), str) and data["val"].endswith( | |
"coco/val2017.txt" | |
) # COCO dataset | |
nc = 1 if single_cls else int(data["nc"]) # number of classes | |
iouv = torch.linspace(0.5, 0.95, 10).to( | |
device | |
) # iou vector for [email protected]:0.95 | |
niou = iouv.numel() | |
# Dataloader | |
if not training: | |
if device.type != "cpu": | |
model( | |
torch.zeros(1, 3, imgsz, imgsz) | |
.to(device) | |
.type_as(next(model.parameters())) | |
) # run once | |
task = ( | |
task if task in ("train", "val", "test") else "val" | |
) # path to train/val/test images | |
dataloader = create_dataloader( | |
data[task], | |
imgsz, | |
batch_size, | |
gs, | |
single_cls, | |
pad=0.5, | |
rect=True, | |
prefix=colorstr(f"{task}: "), | |
)[0] | |
seen = 0 | |
confusion_matrix = ConfusionMatrix(nc=nc) | |
names = { | |
k: v | |
for k, v in enumerate( | |
model.names if hasattr(model, "names") else model.module.names | |
) | |
} | |
class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) | |
s = ("%20s" + "%11s" * 6) % ( | |
"Class", | |
"Images", | |
"Labels", | |
"P", | |
"R", | |
"[email protected]", | |
"[email protected]:.95", | |
) | |
dt, p, r, f1, mp, mr, map50, map = ( | |
[0.0, 0.0, 0.0], | |
0.0, | |
0.0, | |
0.0, | |
0.0, | |
0.0, | |
0.0, | |
0.0, | |
) | |
loss = torch.zeros(3, device=device) | |
jdict, stats, ap, ap_class = [], [], [], [] | |
for batch_i, (img, targets, paths, shapes) in enumerate( | |
tqdm(dataloader, desc=s) | |
): | |
t1 = time_sync() | |
img = img.to(device, non_blocking=True) | |
img = img.half() if half else img.float() # uint8 to fp16/32 | |
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
targets = targets.to(device) | |
nb, _, height, width = img.shape # batch size, channels, height, width | |
t2 = time_sync() | |
dt[0] += t2 - t1 | |
# Run model | |
out, train_out = model( | |
img, augment=augment | |
) # inference and training outputs | |
dt[1] += time_sync() - t2 | |
# Compute loss | |
if compute_loss: | |
loss += compute_loss([x.float() for x in train_out], targets)[ | |
1 | |
] # box, obj, cls | |
# Run NMS | |
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to( | |
device | |
) # to pixels | |
lb = ( | |
[targets[targets[:, 0] == i, 1:] for i in range(nb)] | |
if save_hybrid | |
else [] | |
) # for autolabelling | |
t3 = time_sync() | |
out = non_max_suppression( | |
out, | |
conf_thres, | |
iou_thres, | |
labels=lb, | |
multi_label=True, | |
agnostic=single_cls, | |
) | |
dt[2] += time_sync() - t3 | |
# Statistics per image | |
for si, pred in enumerate(out): | |
labels = targets[targets[:, 0] == si, 1:] | |
nl = len(labels) | |
tcls = labels[:, 0].tolist() if nl else [] # target class | |
path, shape = Path(paths[si]), shapes[si][0] | |
seen += 1 | |
if len(pred) == 0: | |
if nl: | |
stats.append( | |
( | |
torch.zeros(0, niou, dtype=torch.bool), | |
torch.Tensor(), | |
torch.Tensor(), | |
tcls, | |
) | |
) | |
continue | |
# Predictions | |
if single_cls: | |
pred[:, 5] = 0 | |
predn = pred.clone() | |
scale_coords( | |
img[si].shape[1:], predn[:, :4], shape, shapes[si][1] | |
) # native-space pred | |
# Evaluate | |
if nl: | |
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes | |
scale_coords( | |
img[si].shape[1:], tbox, shape, shapes[si][1] | |
) # native-space labels | |
labelsn = torch.cat( | |
(labels[:, 0:1], tbox), 1 | |
) # native-space labels | |
correct = process_batch(predn, labelsn, iouv) | |
if plots: | |
confusion_matrix.process_batch(predn, labelsn) | |
else: | |
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) | |
stats.append( | |
(correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls) | |
) # (correct, conf, pcls, tcls) | |
# Save/log | |
if save_txt: | |
save_one_txt( | |
predn, | |
save_conf, | |
shape, | |
file=save_dir / "labels" / (path.stem + ".txt"), | |
) | |
if save_json: | |
save_one_json( | |
predn, jdict, path, class_map | |
) # append to COCO-JSON dictionary | |
callbacks.run( | |
"on_val_image_end", pred, predn, path, names, img[si] | |
) | |
# Plot images | |
if plots and batch_i < 3: | |
f = save_dir / f"val_batch{batch_i}_labels.jpg" # labels | |
Thread( | |
target=plot_images, | |
args=(img, targets, paths, f, names), | |
daemon=True, | |
).start() | |
f = save_dir / f"val_batch{batch_i}_pred.jpg" # predictions | |
Thread( | |
target=plot_images, | |
args=(img, output_to_target(out), paths, f, names), | |
daemon=True, | |
).start() | |
# Compute statistics | |
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy | |
if len(stats) and stats[0].any(): | |
p, r, ap, f1, ap_class = ap_per_class( | |
*stats, plot=plots, save_dir=save_dir, names=names | |
) | |
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95 | |
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() | |
nt = np.bincount( | |
stats[3].astype(np.int64), minlength=nc | |
) # number of targets per class | |
else: | |
nt = torch.zeros(1) | |
# Print results | |
pf = "%20s" + "%11i" * 2 + "%11.3g" * 4 # print format | |
print(pf % ("all", seen, nt.sum(), mp, mr, map50, map)) | |
# Print results per class | |
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): | |
for i, c in enumerate(ap_class): | |
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) | |
# Print speeds | |
t = tuple(x / seen * 1e3 for x in dt) # speeds per image | |
if not training: | |
shape = (batch_size, 3, imgsz, imgsz) | |
print( | |
f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" | |
% t | |
) | |
# Plots | |
if plots: | |
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) | |
callbacks.run("on_val_end") | |
# Save JSON | |
if save_json and len(jdict): | |
w = ( | |
Path(weights[0] if isinstance(weights, list) else weights).stem | |
if weights is not None | |
else "" | |
) # weights | |
anno_json = str( | |
Path(data.get("path", "../coco")) | |
/ "annotations/instances_val2017.json" | |
) # annotations json | |
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json | |
print(f"\nEvaluating pycocotools mAP... saving {pred_json}...") | |
with open(pred_json, "w") as f: | |
json.dump(jdict, f) | |
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
check_requirements(["pycocotools"]) | |
from pycocotools.coco import COCO | |
from pycocotools.cocoeval import COCOeval | |
anno = COCO(anno_json) # init annotations api | |
pred = anno.loadRes(pred_json) # init predictions api | |
eval = COCOeval(anno, pred, "bbox") | |
if is_coco: | |
eval.params.imgIds = [ | |
int(Path(x).stem) for x in dataloader.dataset.img_files | |
] # image IDs to evaluate | |
eval.evaluate() | |
eval.accumulate() | |
eval.summarize() | |
map, map50 = eval.stats[ | |
:2 | |
] # update results ([email protected]:0.95, [email protected]) | |
except Exception as e: | |
print(f"pycocotools unable to run: {e}") | |
# Return results | |
model.float() # for training | |
if not training: | |
s = ( | |
f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" | |
if save_txt | |
else "" | |
) | |
print(f"Results saved to {colorstr('bold', save_dir)}{s}") | |
maps = np.zeros(nc) + map | |
for i, c in enumerate(ap_class): | |
maps[c] = ap[i] | |
return ( | |
(mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), | |
maps, | |
t, | |
) | |
def parse_opt(): | |
parser = argparse.ArgumentParser(prog="val.py") | |
parser.add_argument( | |
"--data", | |
type=str, | |
default="data/coco128.yaml", | |
help="dataset.yaml path", | |
) | |
parser.add_argument( | |
"--weights", | |
nargs="+", | |
type=str, | |
default="yolov5s.pt", | |
help="model.pt path(s)", | |
) | |
parser.add_argument( | |
"--batch-size", type=int, default=32, help="batch size" | |
) | |
parser.add_argument( | |
"--imgsz", | |
"--img", | |
"--img-size", | |
type=int, | |
default=640, | |
help="inference size (pixels)", | |
) | |
parser.add_argument( | |
"--conf-thres", type=float, default=0.001, help="confidence threshold" | |
) | |
parser.add_argument( | |
"--iou-thres", type=float, default=0.6, help="NMS IoU threshold" | |
) | |
parser.add_argument( | |
"--task", default="val", help="train, val, test, speed or study" | |
) | |
parser.add_argument( | |
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" | |
) | |
parser.add_argument( | |
"--single-cls", | |
action="store_true", | |
help="treat as single-class dataset", | |
) | |
parser.add_argument( | |
"--augment", action="store_true", help="augmented inference" | |
) | |
parser.add_argument( | |
"--verbose", action="store_true", help="report mAP by class" | |
) | |
parser.add_argument( | |
"--save-txt", action="store_true", help="save results to *.txt" | |
) | |
parser.add_argument( | |
"--save-hybrid", | |
action="store_true", | |
help="save label+prediction hybrid results to *.txt", | |
) | |
parser.add_argument( | |
"--save-conf", | |
action="store_true", | |
help="save confidences in --save-txt labels", | |
) | |
parser.add_argument( | |
"--save-json", | |
action="store_true", | |
help="save a COCO-JSON results file", | |
) | |
parser.add_argument( | |
"--project", default="runs/val", help="save to project/name" | |
) | |
parser.add_argument("--name", default="exp", help="save to project/name") | |
parser.add_argument( | |
"--exist-ok", | |
action="store_true", | |
help="existing project/name ok, do not increment", | |
) | |
parser.add_argument( | |
"--half", action="store_true", help="use FP16 half-precision inference" | |
) | |
opt = parser.parse_args() | |
opt.save_json |= opt.data.endswith("coco.yaml") | |
opt.save_txt |= opt.save_hybrid | |
opt.data = check_yaml(opt.data) # check YAML | |
return opt | |
def main(opt): | |
set_logging() | |
print( | |
colorstr("val: ") + ", ".join(f"{k}={v}" for k, v in vars(opt).items()) | |
) | |
check_requirements( | |
requirements=FILE.parent / "requirements.txt", | |
exclude=("tensorboard", "thop"), | |
) | |
if opt.task in ("train", "val", "test"): # run normally | |
run(**vars(opt)) | |
elif opt.task == "speed": # speed benchmarks | |
for w in ( | |
opt.weights if isinstance(opt.weights, list) else [opt.weights] | |
): | |
run( | |
opt.data, | |
weights=w, | |
batch_size=opt.batch_size, | |
imgsz=opt.imgsz, | |
conf_thres=0.25, | |
iou_thres=0.45, | |
save_json=False, | |
plots=False, | |
) | |
elif opt.task == "study": # run over a range of settings and save/plot | |
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt | |
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes) | |
for w in ( | |
opt.weights if isinstance(opt.weights, list) else [opt.weights] | |
): | |
f = f"study_{Path(opt.data).stem}_{Path(w).stem}.txt" # filename to save to | |
y = [] # y axis | |
for i in x: # img-size | |
print(f"\nRunning {f} point {i}...") | |
r, _, t = run( | |
opt.data, | |
weights=w, | |
batch_size=opt.batch_size, | |
imgsz=i, | |
conf_thres=opt.conf_thres, | |
iou_thres=opt.iou_thres, | |
save_json=opt.save_json, | |
plots=False, | |
) | |
y.append(r + t) # results and times | |
np.savetxt(f, y, fmt="%10.4g") # save | |
os.system("zip -r study.zip study_*.txt") | |
plot_study_txt(x=x) # plot | |
if __name__ == "__main__": | |
opt = parse_opt() | |
main(opt) | |